材料科学
抛光
磨料
化学机械平面化
基质(水族馆)
氮化镓
表面粗糙度
Crystal(编程语言)
单晶
钻石
半导体
复合材料
冶金
化学工程
光电子学
结晶学
图层(电子)
计算机科学
程序设计语言
化学
地质学
海洋学
工程类
作者
Congming Ke,Shoulin Liu,Yiao Pang,Yongping Wei,Yaping Wu,Qiufa Luo,Yueqin Wu,Jing Lü
标识
DOI:10.1016/j.ceramint.2024.03.247
摘要
With the rapid development of the third-generation semiconductor materials, the chemical mechanical polishing rate and surface quality of single-crystal gallium nitride (GaN) substrates have been a research hot-spot. In this work, the synergistic effect of abrasive friction and glycine (Gly) on improving the chemical mechanical polishing (CMP) performance of single-crystal GaN substrate is proposed and studied systematically. The results indicated that the polishing solutions with Gly have a 2.3-fold improvement in material removal rate (MRR) as well as scratch-free surface than that without Gly. The maximum MRR of the single-crystal GaN substrate is 129.4 nm/h with surface roughness (Ra) of 0.64 nm attained by using the polishing solutions containing only 3 wt% potassium persulfate (K2S2O8). In contrast, when Gly is added as a reaction reagent, which can be activated by abrasive friction, the maximum MRR is increased to 304.2 nm/h with Ra of 0.42 nm. Meanwhile, the epitaxial evaluation indicates that two-dimensional (2D) MoS2 grown on processed single-crystal GaN substrate has superior crystalline quality and optical properties. Finally, the polishing mechanism of the single-crystal GaN substrate using the mixed solutions of K2S2O8 and Gly is discussed. The proposed CMP method has potential applications in the semiconductor and microelectronics industries.
科研通智能强力驱动
Strongly Powered by AbleSci AI