Layered vanadium-based oxides have emerged as highly promising candidates for aqueous zinc-ion batteries (AZIBs) due to their open-framework layer structure and high theoretical capacity among the diverse cathode materials investigated. However, the susceptibility to structural collapse during charge-discharge cycling severely hampers their advancement. Herein, we propose an effective strategy to enhance the cycling stability of vanadium oxides. Initially, the structural integrity of the host material is significantly reinforced by incorporating bi-cations Na