材料科学
纳米晶
发光二极管
钙钛矿(结构)
镉
兴奋剂
光电子学
溴化物
Crystal(编程语言)
铅(地质)
跟踪(心理语言学)
化学工程
化学
无机化学
纳米技术
冶金
计算机科学
程序设计语言
地质学
语言学
哲学
地貌学
工程类
作者
Jianfeng Zhang,Junhui Wang,Lei Cai,Sheng Wang,Kaifeng Wu,Baoquan Sun,Weitao Zheng,Stephen V. Kershaw,Guohua Jia,Xiaoyu Zhang,Andrey L. Rogach,Xuyong Yang
标识
DOI:10.1002/anie.202403996
摘要
Abstract Decreasing perovskite nanocrystal size increases radiative recombination due to the quantum confinement effect, but also increases the Auger recombination rate which leads to carrier imbalance in the emitting layers of electroluminescent devices. Here, we overcome this trade‐off by increasing the exciton effective mass without affecting the size, which is realized through the trace Cd 2+ doping of formamidinium lead bromide perovskite nanocrystals. We observe an ~2.7 times increase in the exciton binding energy benefiting from a slight distortion of the [BX 6 ] 4− octahedra caused by doping in the case of that the Auger recombination rate is almost unchanged. As a result, bright color‐saturated green emitting perovskite nanocrystals with a photoluminescence quantum yield of 96 % are obtained. Cd 2+ doping also shifts up the energy levels of the nanocrystals, relative to the Fermi level so that heavily n ‐doped emitters convert into only slightly n ‐doped ones; this boosts the charge injection efficiency of the corresponding light‐emitting diodes. The light‐emitting devices based on those nanocrystals reached a high external quantum efficiency of 29.4 % corresponding to a current efficiency of 123 cd A −1 , and showed dramatically improved device lifetime, with a narrow bandwidth of 22 nm and Commission Internationale de I'Eclairage coordinates of (0.20, 0.76) for color‐saturated green emission for the electroluminescence peak centered at 534 nm, thus being fully compliant with the latest standard for wide color gamut displays.
科研通智能强力驱动
Strongly Powered by AbleSci AI