Photocathodic protection (PCP) anticorrosion using sunlight is a green and sustainable technology. However, the ease of carriers compounding and the low light utilization are still the main restraints to its development. To develop an effective photoanode, a metal-organic framework (MOF, i.e., ZIF-67) material is electrodeposited and grown in-situ on TiO2 nanorods. The morphological structure, light absorption properties, photoelectrochemical properties and cathodic protection principle of ZIF-67/TiO2 photoanode are analysed by SEM, PL, I-V and EIS. The material characterization and light absorption characteristics show that the photoanode has good light absorption performance and higher electron hole separation efficiency. Photoelectrochemical test shows that ZIF-67/TiO2 photoanode has excellent photocathodic protection for 316L stainless steel (316L SS). ZTRs-60 has the optimal protection effect. Under simulated sunlight, the OCP of 316L SS coupled ZTRs-60 is -0.41 V vs. Ag/AgCl, and the current density of the I-T curve can reach 20 μA/cm2. EIS and Tafel tests show that the photogenerated electrons transfer to the stainless steel surface, which promotes the cathode polarization process and alleviates the metal corrosion.