亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying diagnostic indicators for type 2 diabetes mellitus from physical examination using interpretable machine learning approach

接收机工作特性 体格检查 2型糖尿病 机器学习 计算机科学 医学 构造(python库) 医疗保健 人工智能 全国健康与营养检查调查 数据挖掘 算法 糖尿病 人口 环境卫生 内科学 内分泌学 经济 程序设计语言 经济增长
作者
Xiang Lv,Jiesi Luo,Wei Huang,Hui Guo,Xue Bai,Pijun Yan,Zongzhe Jiang,Yonglin Zhang,Runyu Jing,Qi Chen,Menglong Li
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:15 被引量:2
标识
DOI:10.3389/fendo.2024.1376220
摘要

Background Identification of patients at risk for type 2 diabetes mellitus (T2DM) can not only prevent complications and reduce suffering but also ease the health care burden. While routine physical examination can provide useful information for diagnosis, manual exploration of routine physical examination records is not feasible due to the high prevalence of T2DM. Objectives We aim to build interpretable machine learning models for T2DM diagnosis and uncover important diagnostic indicators from physical examination, including age- and sex-related indicators. Methods In this study, we present three weighted diversity density (WDD)-based algorithms for T2DM screening that use physical examination indicators, the algorithms are highly transparent and interpretable, two of which are missing value tolerant algorithms. Patients Regarding the dataset, we collected 43 physical examination indicator data from 11,071 cases of T2DM patients and 126,622 healthy controls at the Affiliated Hospital of Southwest Medical University. After data processing, we used a data matrix containing 16004 EHRs and 43 clinical indicators for modelling. Results The indicators were ranked according to their model weights, and the top 25% of indicators were found to be directly or indirectly related to T2DM. We further investigated the clinical characteristics of different age and sex groups, and found that the algorithms can detect relevant indicators specific to these groups. The algorithms performed well in T2DM screening, with the highest area under the receiver operating characteristic curve (AUC) reaching 0.9185. Conclusion This work utilized the interpretable WDD-based algorithms to construct T2DM diagnostic models based on physical examination indicators. By modeling data grouped by age and sex, we identified several predictive markers related to age and sex, uncovering characteristic differences among various groups of T2DM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
charliechen完成签到 ,获得积分10
25秒前
草木完成签到 ,获得积分10
44秒前
桐桐应助111111采纳,获得10
58秒前
研友_LNBgkL发布了新的文献求助10
1分钟前
忍冬发布了新的文献求助10
1分钟前
1分钟前
领导范儿应助忍冬采纳,获得10
1分钟前
111111发布了新的文献求助10
1分钟前
852应助爱上写文章采纳,获得10
1分钟前
1分钟前
缓慢珠发布了新的文献求助10
1分钟前
斯文败类应助HenryChan采纳,获得10
1分钟前
大模型应助缓慢珠采纳,获得10
1分钟前
科目三应助byq采纳,获得10
1分钟前
雁丘完成签到 ,获得积分10
1分钟前
shentaii完成签到,获得积分10
1分钟前
研友_LNBgkL完成签到,获得积分10
1分钟前
缓慢珠完成签到,获得积分10
2分钟前
huxuehong完成签到 ,获得积分10
2分钟前
窝窝窝书完成签到,获得积分10
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
kyokyoro完成签到,获得积分10
3分钟前
大胆的碧菡完成签到,获得积分10
3分钟前
Lucas应助zhairx采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
HJL发布了新的文献求助10
4分钟前
4分钟前
ZaZa完成签到,获得积分10
4分钟前
byq发布了新的文献求助10
4分钟前
Jayzie完成签到 ,获得积分10
4分钟前
4分钟前
慕青应助科研通管家采纳,获得10
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
LPPQBB应助科研通管家采纳,获得30
4分钟前
小小心愿完成签到,获得积分20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356819
求助须知:如何正确求助?哪些是违规求助? 4488529
关于积分的说明 13972265
捐赠科研通 4389506
什么是DOI,文献DOI怎么找? 2411618
邀请新用户注册赠送积分活动 1404132
关于科研通互助平台的介绍 1378190