亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying diagnostic indicators for type 2 diabetes mellitus from physical examination using interpretable machine learning approach

接收机工作特性 体格检查 2型糖尿病 机器学习 计算机科学 医学 构造(python库) 医疗保健 人工智能 全国健康与营养检查调查 数据挖掘 算法 糖尿病 人口 环境卫生 内科学 内分泌学 经济 程序设计语言 经济增长
作者
Xiang Lv,Jiesi Luo,Wei Huang,Hui Guo,Xue Bai,Pijun Yan,Zongzhe Jiang,Yonglin Zhang,Runyu Jing,Qi Chen,Menglong Li
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:15 被引量:2
标识
DOI:10.3389/fendo.2024.1376220
摘要

Background Identification of patients at risk for type 2 diabetes mellitus (T2DM) can not only prevent complications and reduce suffering but also ease the health care burden. While routine physical examination can provide useful information for diagnosis, manual exploration of routine physical examination records is not feasible due to the high prevalence of T2DM. Objectives We aim to build interpretable machine learning models for T2DM diagnosis and uncover important diagnostic indicators from physical examination, including age- and sex-related indicators. Methods In this study, we present three weighted diversity density (WDD)-based algorithms for T2DM screening that use physical examination indicators, the algorithms are highly transparent and interpretable, two of which are missing value tolerant algorithms. Patients Regarding the dataset, we collected 43 physical examination indicator data from 11,071 cases of T2DM patients and 126,622 healthy controls at the Affiliated Hospital of Southwest Medical University. After data processing, we used a data matrix containing 16004 EHRs and 43 clinical indicators for modelling. Results The indicators were ranked according to their model weights, and the top 25% of indicators were found to be directly or indirectly related to T2DM. We further investigated the clinical characteristics of different age and sex groups, and found that the algorithms can detect relevant indicators specific to these groups. The algorithms performed well in T2DM screening, with the highest area under the receiver operating characteristic curve (AUC) reaching 0.9185. Conclusion This work utilized the interpretable WDD-based algorithms to construct T2DM diagnostic models based on physical examination indicators. By modeling data grouped by age and sex, we identified several predictive markers related to age and sex, uncovering characteristic differences among various groups of T2DM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
嘎嘎嘎完成签到,获得积分10
9秒前
11秒前
归海浩阑完成签到,获得积分10
12秒前
19秒前
CodeCraft应助夏夏夏夏夏夏采纳,获得10
20秒前
26秒前
GU由于求助违规,被管理员扣积分10
43秒前
hanawang应助轻松板栗采纳,获得30
44秒前
yangyang给yangyang的求助进行了留言
53秒前
null给GU的求助进行了留言
55秒前
1分钟前
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
qpp发布了新的文献求助10
1分钟前
深渊与海完成签到,获得积分10
1分钟前
鱼鱼完成签到 ,获得积分10
1分钟前
hanawang应助banxia0001采纳,获得20
1分钟前
kuku上岸完成签到,获得积分10
1分钟前
hanawang应助轻松板栗采纳,获得10
1分钟前
一颗溏心蛋完成签到 ,获得积分10
1分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
2分钟前
胡静发布了新的文献求助10
2分钟前
YYL完成签到 ,获得积分10
2分钟前
2分钟前
大模型应助微笑的鼠标采纳,获得10
2分钟前
科研通AI2S应助胡静采纳,获得10
2分钟前
2分钟前
czq完成签到 ,获得积分10
2分钟前
耍酷蘑菇完成签到,获得积分10
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
浮游应助null采纳,获得10
2分钟前
科研通AI5应助倪妮采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得30
3分钟前
归尘应助科研通管家采纳,获得30
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116192
求助须知:如何正确求助?哪些是违规求助? 4322907
关于积分的说明 13469685
捐赠科研通 4155108
什么是DOI,文献DOI怎么找? 2276985
邀请新用户注册赠送积分活动 1278855
关于科研通互助平台的介绍 1216881