Identifying diagnostic indicators for type 2 diabetes mellitus from physical examination using interpretable machine learning approach

接收机工作特性 体格检查 2型糖尿病 机器学习 计算机科学 医学 构造(python库) 医疗保健 人工智能 全国健康与营养检查调查 数据挖掘 算法 糖尿病 人口 环境卫生 内科学 内分泌学 经济 程序设计语言 经济增长
作者
Xiang Lv,Jiesi Luo,Wei Huang,Hui Guo,Xue Bai,Pijun Yan,Zongzhe Jiang,Yonglin Zhang,Runyu Jing,Qi Chen,Menglong Li
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fendo.2024.1376220
摘要

Background Identification of patients at risk for type 2 diabetes mellitus (T2DM) can not only prevent complications and reduce suffering but also ease the health care burden. While routine physical examination can provide useful information for diagnosis, manual exploration of routine physical examination records is not feasible due to the high prevalence of T2DM. Objectives We aim to build interpretable machine learning models for T2DM diagnosis and uncover important diagnostic indicators from physical examination, including age- and sex-related indicators. Methods In this study, we present three weighted diversity density (WDD)-based algorithms for T2DM screening that use physical examination indicators, the algorithms are highly transparent and interpretable, two of which are missing value tolerant algorithms. Patients Regarding the dataset, we collected 43 physical examination indicator data from 11,071 cases of T2DM patients and 126,622 healthy controls at the Affiliated Hospital of Southwest Medical University. After data processing, we used a data matrix containing 16004 EHRs and 43 clinical indicators for modelling. Results The indicators were ranked according to their model weights, and the top 25% of indicators were found to be directly or indirectly related to T2DM. We further investigated the clinical characteristics of different age and sex groups, and found that the algorithms can detect relevant indicators specific to these groups. The algorithms performed well in T2DM screening, with the highest area under the receiver operating characteristic curve (AUC) reaching 0.9185. Conclusion This work utilized the interpretable WDD-based algorithms to construct T2DM diagnostic models based on physical examination indicators. By modeling data grouped by age and sex, we identified several predictive markers related to age and sex, uncovering characteristic differences among various groups of T2DM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
112发布了新的文献求助10
刚刚
111111111发布了新的文献求助10
1秒前
香蕉半邪发布了新的文献求助50
2秒前
研友_zLaJQn发布了新的文献求助10
2秒前
愉快的败完成签到,获得积分10
2秒前
嗯啊啊啊发布了新的文献求助10
3秒前
zjj发布了新的文献求助10
3秒前
hhhblabla完成签到,获得积分10
4秒前
雷文博发布了新的文献求助10
4秒前
4秒前
还没想好完成签到,获得积分10
7秒前
7秒前
jimmy发布了新的文献求助10
8秒前
9秒前
哎嘿应助科研通管家采纳,获得10
9秒前
shinysparrow应助科研通管家采纳,获得200
9秒前
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
10秒前
zcy发布了新的文献求助10
10秒前
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
哎嘿应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
隐形曼青应助科研通管家采纳,获得30
10秒前
哎嘿应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
10秒前
嗯啊啊啊完成签到,获得积分10
11秒前
顾矜应助谢奕采纳,获得20
11秒前
11秒前
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156090
求助须知:如何正确求助?哪些是违规求助? 2807496
关于积分的说明 7873356
捐赠科研通 2465814
什么是DOI,文献DOI怎么找? 1312446
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905