Deciphering Cell Types by Integrating scATAC-seq Data with Genome Sequences

计算生物学 基因组 生物 遗传学 基因
作者
Yuedong Yang,Yuansong Zeng,Mai Luo,Ningyuan Shangguan,Peiyu Shi,Junxi Feng,Jin Xu,Ken Chen,Yutong Lu,Weijiang Yu
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-3539732/v1
摘要

Abstract The single cell ATAC sequencing (scATAC-seq) technology provides insight into gene regulation and epigenetic heterogeneity at single-cell resolution, but cell annotation from scATAC-seq remains challenging due to high dimensionality and extreme sparsity within the data. Existing cell annotation methods mostly focused on cell peak matrix without fully utilizing the underlying genomic sequence. Here, we propose a method, SANGO, for accurate s ingle cell an notation by integrating g en o me sequences around the accessibility peaks within scATAC data. The genome sequences of peaks are encoded into low-dimensional embeddings, and then iteratively used to reconstruct the peak stats of cells through a fully-connected network. The learned weights are considered as regulatory modes to represent cells, and utilized to align the query cells and the annotated cells in the reference data through a graph transformer network for cell annotations. SANGO was demonstrated to consistently outperform competing methods on 55 paired scATAC-seq datasets across samples, platforms, and tissues. SANGO was also shown able to detect unknown tumor cells through attention edge weights learned by graph transformer. Moreover, according to the annotated cells, we found cell type-specific peaks that provide functional insights/ biological signals through expression enrichment analysis, cis-regulatory chromatin interactions analysis, and motif enrichment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
turbohero发布了新的文献求助10
2秒前
3秒前
3秒前
qw1完成签到,获得积分20
3秒前
5秒前
keyantong完成签到,获得积分10
6秒前
babe发布了新的文献求助10
8秒前
liyb关注了科研通微信公众号
9秒前
11秒前
tianmengkui完成签到,获得积分10
11秒前
qw1发布了新的文献求助210
11秒前
量子星尘发布了新的文献求助10
12秒前
小丹完成签到 ,获得积分10
12秒前
13秒前
15秒前
紫泠榭发布了新的文献求助10
17秒前
沉默高跟鞋完成签到,获得积分10
18秒前
怕孤单的从灵完成签到 ,获得积分10
18秒前
SHASHA完成签到,获得积分10
19秒前
19秒前
25秒前
小二郎应助兴奋白枫采纳,获得10
25秒前
龙成阳完成签到,获得积分10
27秒前
cc完成签到,获得积分10
27秒前
安陌煜发布了新的文献求助10
27秒前
28秒前
30秒前
33秒前
科研通AI2S应助ZhangXR采纳,获得10
33秒前
华仔应助tanglu采纳,获得10
34秒前
37秒前
39秒前
41秒前
BoBo完成签到 ,获得积分10
41秒前
42秒前
kiki完成签到,获得积分10
42秒前
Dada应助滕皓轩采纳,获得30
42秒前
44秒前
kiki发布了新的文献求助10
46秒前
yzWang发布了新的文献求助10
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958068
求助须知:如何正确求助?哪些是违规求助? 3504219
关于积分的说明 11117555
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788351
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511