Deciphering Cell Types by Integrating scATAC-seq Data with Genome Sequences

计算生物学 基因组 生物 遗传学 基因
作者
Yuedong Yang,Yuansong Zeng,Mai Luo,Ningyuan Shangguan,Peiyu Shi,Junxi Feng,Jin Xu,Ken Chen,Yutong Lu,Yuedong Yang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3539732/v1
摘要

Abstract The single cell ATAC sequencing (scATAC-seq) technology provides insight into gene regulation and epigenetic heterogeneity at single-cell resolution, but cell annotation from scATAC-seq remains challenging due to high dimensionality and extreme sparsity within the data. Existing cell annotation methods mostly focused on cell peak matrix without fully utilizing the underlying genomic sequence. Here, we propose a method, SANGO, for accurate s ingle cell an notation by integrating g en o me sequences around the accessibility peaks within scATAC data. The genome sequences of peaks are encoded into low-dimensional embeddings, and then iteratively used to reconstruct the peak stats of cells through a fully-connected network. The learned weights are considered as regulatory modes to represent cells, and utilized to align the query cells and the annotated cells in the reference data through a graph transformer network for cell annotations. SANGO was demonstrated to consistently outperform competing methods on 55 paired scATAC-seq datasets across samples, platforms, and tissues. SANGO was also shown able to detect unknown tumor cells through attention edge weights learned by graph transformer. Moreover, according to the annotated cells, we found cell type-specific peaks that provide functional insights/ biological signals through expression enrichment analysis, cis-regulatory chromatin interactions analysis, and motif enrichment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hanlanx完成签到,获得积分10
刚刚
刚刚
WCM完成签到,获得积分10
刚刚
wroy完成签到,获得积分10
1秒前
3秒前
hanlanx发布了新的文献求助10
3秒前
善学以致用应助德德采纳,获得10
3秒前
77完成签到,获得积分10
3秒前
4秒前
4秒前
爱科研的小潘完成签到,获得积分10
4秒前
兔兔不吐泡泡完成签到,获得积分10
5秒前
5秒前
yagye56发布了新的文献求助10
5秒前
其7应助漂亮的毛巾采纳,获得50
6秒前
7秒前
勤奋的便当完成签到,获得积分20
7秒前
7秒前
Kenzonvay完成签到,获得积分10
8秒前
8秒前
WYF发布了新的文献求助10
9秒前
避橙发布了新的文献求助10
9秒前
9秒前
9秒前
nightmoonsun发布了新的文献求助10
9秒前
user_huang完成签到,获得积分10
10秒前
Xiao完成签到,获得积分10
10秒前
黑白发布了新的文献求助10
10秒前
Andrew02应助小石头采纳,获得10
11秒前
划水发布了新的文献求助30
11秒前
Andrew02应助jnngshan采纳,获得30
11秒前
占臻发布了新的文献求助10
12秒前
自由路发布了新的文献求助10
12秒前
13秒前
星星星星完成签到,获得积分20
14秒前
香蕉觅云应助避橙采纳,获得10
15秒前
友好凌柏发布了新的文献求助30
15秒前
李烁完成签到,获得积分10
16秒前
像鱼发布了新的文献求助10
17秒前
星星星星发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148173
求助须知:如何正确求助?哪些是违规求助? 2799264
关于积分的说明 7834331
捐赠科研通 2456531
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655