Deciphering Cell Types by Integrating scATAC-seq Data with Genome Sequences

计算生物学 基因组 生物 遗传学 基因
作者
Yuedong Yang,Yuansong Zeng,Mai Luo,Ningyuan Shangguan,Peiyu Shi,Junxi Feng,Jin Xu,Ken Chen,Yutong Lu,Weijiang Yu
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-3539732/v1
摘要

Abstract The single cell ATAC sequencing (scATAC-seq) technology provides insight into gene regulation and epigenetic heterogeneity at single-cell resolution, but cell annotation from scATAC-seq remains challenging due to high dimensionality and extreme sparsity within the data. Existing cell annotation methods mostly focused on cell peak matrix without fully utilizing the underlying genomic sequence. Here, we propose a method, SANGO, for accurate s ingle cell an notation by integrating g en o me sequences around the accessibility peaks within scATAC data. The genome sequences of peaks are encoded into low-dimensional embeddings, and then iteratively used to reconstruct the peak stats of cells through a fully-connected network. The learned weights are considered as regulatory modes to represent cells, and utilized to align the query cells and the annotated cells in the reference data through a graph transformer network for cell annotations. SANGO was demonstrated to consistently outperform competing methods on 55 paired scATAC-seq datasets across samples, platforms, and tissues. SANGO was also shown able to detect unknown tumor cells through attention edge weights learned by graph transformer. Moreover, according to the annotated cells, we found cell type-specific peaks that provide functional insights/ biological signals through expression enrichment analysis, cis-regulatory chromatin interactions analysis, and motif enrichment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoyi完成签到,获得积分10
1秒前
aa发布了新的文献求助10
1秒前
1秒前
一拳一个小朋友完成签到,获得积分10
2秒前
光亮的青文完成签到 ,获得积分10
2秒前
zhdhh发布了新的文献求助10
2秒前
2秒前
2秒前
LIU关闭了LIU文献求助
2秒前
科研通AI6应助ma采纳,获得30
2秒前
bdJ发布了新的文献求助10
3秒前
天天快乐应助竹子快跑采纳,获得10
4秒前
蒋芳华完成签到,获得积分10
4秒前
了了发布了新的文献求助10
4秒前
4秒前
Zhaoyt发布了新的文献求助10
4秒前
华仔应助Susan采纳,获得10
4秒前
4秒前
5秒前
5秒前
肉song小贝完成签到,获得积分20
6秒前
流域之痕完成签到,获得积分10
6秒前
戳戳完成签到,获得积分10
6秒前
希望天下0贩的0应助Loststar采纳,获得10
6秒前
6秒前
清欢应助生物技术采纳,获得10
7秒前
丽晶洁愿完成签到 ,获得积分10
7秒前
无花果应助California采纳,获得10
7秒前
朴实的薯片完成签到,获得积分10
7秒前
7秒前
如意白易完成签到,获得积分20
7秒前
魁梧的怜南完成签到,获得积分10
7秒前
8秒前
彭于彦祖应助tinale_huang采纳,获得30
9秒前
王粒伊完成签到,获得积分10
9秒前
Starry发布了新的文献求助10
9秒前
66m37发布了新的文献求助10
9秒前
彭于晏应助科研王采纳,获得10
10秒前
格纹完成签到,获得积分10
10秒前
CKK完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647245
求助须知:如何正确求助?哪些是违规求助? 4773101
关于积分的说明 15038498
捐赠科研通 4805952
什么是DOI,文献DOI怎么找? 2570026
邀请新用户注册赠送积分活动 1526936
关于科研通互助平台的介绍 1485992