Deciphering Cell Types by Integrating scATAC-seq Data with Genome Sequences

计算生物学 基因组 生物 遗传学 基因
作者
Yuedong Yang,Yuansong Zeng,Mai Luo,Ningyuan Shangguan,Peiyu Shi,Junxi Feng,Jin Xu,Ken Chen,Yutong Lu,Weijiang Yu
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-3539732/v1
摘要

Abstract The single cell ATAC sequencing (scATAC-seq) technology provides insight into gene regulation and epigenetic heterogeneity at single-cell resolution, but cell annotation from scATAC-seq remains challenging due to high dimensionality and extreme sparsity within the data. Existing cell annotation methods mostly focused on cell peak matrix without fully utilizing the underlying genomic sequence. Here, we propose a method, SANGO, for accurate s ingle cell an notation by integrating g en o me sequences around the accessibility peaks within scATAC data. The genome sequences of peaks are encoded into low-dimensional embeddings, and then iteratively used to reconstruct the peak stats of cells through a fully-connected network. The learned weights are considered as regulatory modes to represent cells, and utilized to align the query cells and the annotated cells in the reference data through a graph transformer network for cell annotations. SANGO was demonstrated to consistently outperform competing methods on 55 paired scATAC-seq datasets across samples, platforms, and tissues. SANGO was also shown able to detect unknown tumor cells through attention edge weights learned by graph transformer. Moreover, according to the annotated cells, we found cell type-specific peaks that provide functional insights/ biological signals through expression enrichment analysis, cis-regulatory chromatin interactions analysis, and motif enrichment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助冷傲老头采纳,获得20
1秒前
2秒前
长长的名字完成签到 ,获得积分10
6秒前
斯文败类应助jila采纳,获得10
7秒前
10秒前
Hello应助嘿嘿采纳,获得10
11秒前
可可可可汁完成签到 ,获得积分10
14秒前
无奈的尔容完成签到,获得积分10
16秒前
Xiaohu完成签到,获得积分10
17秒前
XIEQ发布了新的文献求助10
18秒前
18秒前
科研通AI6应助yyanxuemin919采纳,获得10
20秒前
20秒前
22秒前
24秒前
一头猪发布了新的文献求助10
25秒前
Bazinga完成签到,获得积分10
25秒前
嗯嗯嗯完成签到,获得积分10
26秒前
懒鲸鱼给懒鲸鱼的求助进行了留言
26秒前
27秒前
嘿嘿发布了新的文献求助10
27秒前
able完成签到 ,获得积分10
28秒前
29秒前
嗯嗯嗯发布了新的文献求助10
30秒前
丘比特应助度ewf采纳,获得10
31秒前
丽丽丽发布了新的文献求助10
31秒前
yyanxuemin919发布了新的文献求助10
31秒前
蘑菇完成签到 ,获得积分10
34秒前
jam发布了新的文献求助10
34秒前
35秒前
烟花应助ccc采纳,获得10
36秒前
拉长的诗蕊完成签到,获得积分10
36秒前
37秒前
大妙妙完成签到 ,获得积分10
40秒前
40秒前
里里完成签到 ,获得积分10
41秒前
韩妙发布了新的文献求助10
42秒前
科研通AI6应助丽丽丽采纳,获得10
43秒前
太渊完成签到 ,获得积分10
43秒前
ccc发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432