Deciphering Cell Types by Integrating scATAC-seq Data with Genome Sequences

计算生物学 基因组 生物 遗传学 基因
作者
Yuedong Yang,Yuansong Zeng,Mai Luo,Ningyuan Shangguan,Peiyu Shi,Junxi Feng,Jin Xu,Ken Chen,Yutong Lu,Weijiang Yu
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-3539732/v1
摘要

Abstract The single cell ATAC sequencing (scATAC-seq) technology provides insight into gene regulation and epigenetic heterogeneity at single-cell resolution, but cell annotation from scATAC-seq remains challenging due to high dimensionality and extreme sparsity within the data. Existing cell annotation methods mostly focused on cell peak matrix without fully utilizing the underlying genomic sequence. Here, we propose a method, SANGO, for accurate s ingle cell an notation by integrating g en o me sequences around the accessibility peaks within scATAC data. The genome sequences of peaks are encoded into low-dimensional embeddings, and then iteratively used to reconstruct the peak stats of cells through a fully-connected network. The learned weights are considered as regulatory modes to represent cells, and utilized to align the query cells and the annotated cells in the reference data through a graph transformer network for cell annotations. SANGO was demonstrated to consistently outperform competing methods on 55 paired scATAC-seq datasets across samples, platforms, and tissues. SANGO was also shown able to detect unknown tumor cells through attention edge weights learned by graph transformer. Moreover, according to the annotated cells, we found cell type-specific peaks that provide functional insights/ biological signals through expression enrichment analysis, cis-regulatory chromatin interactions analysis, and motif enrichment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rfr完成签到,获得积分10
刚刚
刚刚
蝶步韶华发布了新的文献求助10
1秒前
czx发布了新的文献求助10
1秒前
2秒前
2秒前
希望天下0贩的0应助123456采纳,获得10
3秒前
YY发布了新的文献求助10
4秒前
rfr发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
6秒前
cui18发布了新的文献求助10
7秒前
Mianiu应助不做花瓶好多年采纳,获得10
8秒前
直率凝丝发布了新的文献求助30
8秒前
斯文败类应助务实土豆采纳,获得10
8秒前
9秒前
时光留痕完成签到,获得积分10
9秒前
钟琪发布了新的文献求助10
10秒前
爽歪歪发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
田様应助蝶步韶华采纳,获得10
12秒前
烟花应助时光留痕采纳,获得10
12秒前
sunqian完成签到,获得积分10
14秒前
搜集达人应助doctorw采纳,获得10
15秒前
123456完成签到,获得积分10
15秒前
16秒前
高斯完成签到,获得积分20
16秒前
罗婕发布了新的文献求助10
16秒前
ShawnJohn应助zzw18512467916采纳,获得10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
华仔应助刻苦秋尽采纳,获得10
19秒前
小十一完成签到 ,获得积分10
19秒前
科目三应助孙行者采纳,获得30
19秒前
YY完成签到,获得积分10
20秒前
20秒前
白茶的雪发布了新的文献求助10
22秒前
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694252
求助须知:如何正确求助?哪些是违规求助? 5096658
关于积分的说明 15213516
捐赠科研通 4850904
什么是DOI,文献DOI怎么找? 2602050
邀请新用户注册赠送积分活动 1553901
关于科研通互助平台的介绍 1511836