Deciphering Cell Types by Integrating scATAC-seq Data with Genome Sequences

计算生物学 基因组 生物 遗传学 基因
作者
Yuedong Yang,Yuansong Zeng,Mai Luo,Ningyuan Shangguan,Peiyu Shi,Junxi Feng,Jin Xu,Ken Chen,Yutong Lu,Weijiang Yu
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-3539732/v1
摘要

Abstract The single cell ATAC sequencing (scATAC-seq) technology provides insight into gene regulation and epigenetic heterogeneity at single-cell resolution, but cell annotation from scATAC-seq remains challenging due to high dimensionality and extreme sparsity within the data. Existing cell annotation methods mostly focused on cell peak matrix without fully utilizing the underlying genomic sequence. Here, we propose a method, SANGO, for accurate s ingle cell an notation by integrating g en o me sequences around the accessibility peaks within scATAC data. The genome sequences of peaks are encoded into low-dimensional embeddings, and then iteratively used to reconstruct the peak stats of cells through a fully-connected network. The learned weights are considered as regulatory modes to represent cells, and utilized to align the query cells and the annotated cells in the reference data through a graph transformer network for cell annotations. SANGO was demonstrated to consistently outperform competing methods on 55 paired scATAC-seq datasets across samples, platforms, and tissues. SANGO was also shown able to detect unknown tumor cells through attention edge weights learned by graph transformer. Moreover, according to the annotated cells, we found cell type-specific peaks that provide functional insights/ biological signals through expression enrichment analysis, cis-regulatory chromatin interactions analysis, and motif enrichment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实十三发布了新的文献求助10
刚刚
Akim应助mz采纳,获得10
刚刚
董先生发布了新的文献求助10
刚刚
蚊香液发布了新的文献求助10
刚刚
鲸鱼发布了新的文献求助10
刚刚
刚刚
是希希啊a发布了新的文献求助10
1秒前
FashionBoy应助栗子采纳,获得10
1秒前
ky幻影完成签到,获得积分10
1秒前
dddd发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助里昂采纳,获得30
1秒前
2秒前
枯草芽孢完成签到,获得积分10
2秒前
li完成签到,获得积分20
2秒前
赘婿应助Spike采纳,获得10
2秒前
饭饭大王完成签到,获得积分10
2秒前
SY发布了新的文献求助10
3秒前
3秒前
3秒前
诚心寄灵完成签到,获得积分10
4秒前
4秒前
Halari发布了新的文献求助10
4秒前
4秒前
zoe11完成签到,获得积分10
4秒前
4秒前
FlipFlops发布了新的文献求助10
5秒前
我的miemie发布了新的文献求助10
6秒前
小木完成签到 ,获得积分10
6秒前
逢投必中完成签到 ,获得积分10
6秒前
李爱国应助俭朴的雨安采纳,获得10
6秒前
quan完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
lj完成签到,获得积分10
8秒前
qdr关闭了qdr文献求助
8秒前
Hua发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482