Radiomics and machine learning for renal tumor subtype assessment using multiphase computed tomography in a multicenter setting

医学 神经组阅片室 嫌色细胞 放射科 肾细胞癌 队列 接收机工作特性 乳头状肾细胞癌 介入放射学 清除单元格 病理 内科学 神经学 精神科
作者
Annemarie Uhlig,Johannes Uhlig,Andreas Leha,Lorenz Biggemann,Sophie Bachanek,Michael Stöckle,Mathias Reichert,Joachim Lotz,Philip Zeuschner,Alexander Maßmann
出处
期刊:European Radiology [Springer Science+Business Media]
被引量:1
标识
DOI:10.1007/s00330-024-10731-6
摘要

Abstract Objectives To distinguish histological subtypes of renal tumors using radiomic features and machine learning (ML) based on multiphase computed tomography (CT). Material and methods Patients who underwent surgical treatment for renal tumors at two tertiary centers from 2012 to 2022 were included retrospectively. Preoperative arterial (corticomedullary) and venous (nephrogenic) phase CT scans from these centers, as well as from external imaging facilities, were manually segmented, and standardized radiomic features were extracted. Following preprocessing and addressing the class imbalance, a ML algorithm based on extreme gradient boosting trees (XGB) was employed to predict renal tumor subtypes using 10-fold cross-validation. The evaluation was conducted using the multiclass area under the receiver operating characteristic curve (AUC). Algorithms were trained on data from one center and independently tested on data from the other center. Results The training cohort comprised n = 297 patients (64.3% clear cell renal cell cancer [RCC], 13.5% papillary renal cell carcinoma (pRCC), 7.4% chromophobe RCC, 9.4% oncocytomas, and 5.4% angiomyolipomas (AML)), and the testing cohort n = 121 patients (56.2%/16.5%/3.3%/21.5%/2.5%). The XGB algorithm demonstrated a diagnostic performance of AUC = 0.81/0.64/0.8 for venous/arterial/combined contrast phase CT in the training cohort, and AUC = 0.75/0.67/0.75 in the independent testing cohort. In pairwise comparisons, the lowest diagnostic accuracy was evident for the identification of oncocytomas (AUC = 0.57–0.69), and the highest for the identification of AMLs (AUC = 0.9–0.94) Conclusion Radiomic feature analyses can distinguish renal tumor subtypes on routinely acquired CTs, with oncocytomas being the hardest subtype to identify. Clinical relevance statement Radiomic feature analyses yield robust results for renal tumor assessment on routine CTs. Although radiologists routinely rely on arterial phase CT for renal tumor assessment and operative planning, radiomic features derived from arterial phase did not improve the accuracy of renal tumor subtype identification in our cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
神勇从波发布了新的文献求助10
刚刚
桐桐应助shanshanlaichi采纳,获得30
刚刚
1秒前
hohokuz完成签到,获得积分10
1秒前
1秒前
CC完成签到,获得积分10
2秒前
善学以致用应助王家腾采纳,获得10
2秒前
2秒前
在水一方应助花生采纳,获得10
2秒前
su完成签到,获得积分10
3秒前
归尘应助善良的剑通采纳,获得100
4秒前
4秒前
4秒前
落叶解三秋完成签到,获得积分10
4秒前
佳佳应助hohokuz采纳,获得20
5秒前
耶啵发布了新的文献求助30
5秒前
故意的怜晴完成签到 ,获得积分10
5秒前
5秒前
5秒前
Tireastani应助Silver采纳,获得10
5秒前
Muller完成签到,获得积分10
6秒前
maizhan完成签到,获得积分10
6秒前
文龙发布了新的文献求助10
7秒前
传奇3应助xueerbx采纳,获得10
7秒前
7秒前
李白白白完成签到,获得积分10
8秒前
璐璇完成签到,获得积分10
8秒前
乌云乌云快走开完成签到,获得积分10
8秒前
韩雨桐完成签到,获得积分10
9秒前
十七完成签到 ,获得积分10
9秒前
tanc发布了新的文献求助10
9秒前
花痴的电灯泡完成签到,获得积分10
9秒前
bittersweety完成签到,获得积分10
9秒前
蓝冰完成签到,获得积分10
9秒前
赘婿应助花生采纳,获得10
9秒前
如意枫叶发布了新的文献求助10
10秒前
10秒前
张步完成签到 ,获得积分10
10秒前
rayzhanghl完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582