Radiomics and machine learning for renal tumor subtype assessment using multiphase computed tomography in a multicenter setting

医学 神经组阅片室 嫌色细胞 放射科 肾细胞癌 队列 接收机工作特性 乳头状肾细胞癌 介入放射学 清除单元格 病理 内科学 神经学 精神科
作者
Annemarie Uhlig,Johannes Uhlig,Andreas Leha,Lorenz Biggemann,Sophie Bachanek,Michael Stöckle,Mathias Reichert,Joachim Lotz,Philip Zeuschner,Alexander Maßmann
出处
期刊:European Radiology [Springer Nature]
被引量:1
标识
DOI:10.1007/s00330-024-10731-6
摘要

Abstract Objectives To distinguish histological subtypes of renal tumors using radiomic features and machine learning (ML) based on multiphase computed tomography (CT). Material and methods Patients who underwent surgical treatment for renal tumors at two tertiary centers from 2012 to 2022 were included retrospectively. Preoperative arterial (corticomedullary) and venous (nephrogenic) phase CT scans from these centers, as well as from external imaging facilities, were manually segmented, and standardized radiomic features were extracted. Following preprocessing and addressing the class imbalance, a ML algorithm based on extreme gradient boosting trees (XGB) was employed to predict renal tumor subtypes using 10-fold cross-validation. The evaluation was conducted using the multiclass area under the receiver operating characteristic curve (AUC). Algorithms were trained on data from one center and independently tested on data from the other center. Results The training cohort comprised n = 297 patients (64.3% clear cell renal cell cancer [RCC], 13.5% papillary renal cell carcinoma (pRCC), 7.4% chromophobe RCC, 9.4% oncocytomas, and 5.4% angiomyolipomas (AML)), and the testing cohort n = 121 patients (56.2%/16.5%/3.3%/21.5%/2.5%). The XGB algorithm demonstrated a diagnostic performance of AUC = 0.81/0.64/0.8 for venous/arterial/combined contrast phase CT in the training cohort, and AUC = 0.75/0.67/0.75 in the independent testing cohort. In pairwise comparisons, the lowest diagnostic accuracy was evident for the identification of oncocytomas (AUC = 0.57–0.69), and the highest for the identification of AMLs (AUC = 0.9–0.94) Conclusion Radiomic feature analyses can distinguish renal tumor subtypes on routinely acquired CTs, with oncocytomas being the hardest subtype to identify. Clinical relevance statement Radiomic feature analyses yield robust results for renal tumor assessment on routine CTs. Although radiologists routinely rely on arterial phase CT for renal tumor assessment and operative planning, radiomic features derived from arterial phase did not improve the accuracy of renal tumor subtype identification in our cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
畏寒的北发布了新的文献求助10
刚刚
刚刚
1秒前
地下室没有鬼完成签到 ,获得积分10
1秒前
whh123完成签到 ,获得积分10
1秒前
天天快乐应助空禅yew采纳,获得10
2秒前
在水一方应助开心采纳,获得10
3秒前
Akim应助王w采纳,获得10
3秒前
towerman发布了新的文献求助10
3秒前
畅快平蓝完成签到,获得积分10
3秒前
大棒槌发布了新的文献求助10
4秒前
4秒前
Ann完成签到,获得积分10
4秒前
今今发布了新的文献求助10
5秒前
123123完成签到 ,获得积分10
5秒前
SciGPT应助伊酒采纳,获得10
6秒前
何糖发布了新的文献求助10
7秒前
ding应助SEV采纳,获得10
7秒前
田様应助csq采纳,获得10
7秒前
dafwfwaf发布了新的文献求助10
7秒前
7秒前
景别完成签到,获得积分10
8秒前
彭于晏应助zhappy采纳,获得20
8秒前
9秒前
xg发布了新的文献求助10
9秒前
10秒前
Tophet完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
FashionBoy应助落落采纳,获得10
12秒前
活力的青枫完成签到 ,获得积分10
12秒前
苏素肃发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
空禅yew发布了新的文献求助10
14秒前
汉堡包应助花开的声音1217采纳,获得10
14秒前
ying发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808