亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics and machine learning for renal tumor subtype assessment using multiphase computed tomography in a multicenter setting

医学 神经组阅片室 嫌色细胞 放射科 肾细胞癌 队列 接收机工作特性 乳头状肾细胞癌 介入放射学 清除单元格 病理 内科学 神经学 精神科
作者
Annemarie Uhlig,Johannes Uhlig,Andreas Leha,Lorenz Biggemann,Sophie Bachanek,Michael Stöckle,Mathias Reichert,Joachim Lotz,Philip Zeuschner,Alexander Maßmann
出处
期刊:European Radiology [Springer Nature]
被引量:1
标识
DOI:10.1007/s00330-024-10731-6
摘要

Abstract Objectives To distinguish histological subtypes of renal tumors using radiomic features and machine learning (ML) based on multiphase computed tomography (CT). Material and methods Patients who underwent surgical treatment for renal tumors at two tertiary centers from 2012 to 2022 were included retrospectively. Preoperative arterial (corticomedullary) and venous (nephrogenic) phase CT scans from these centers, as well as from external imaging facilities, were manually segmented, and standardized radiomic features were extracted. Following preprocessing and addressing the class imbalance, a ML algorithm based on extreme gradient boosting trees (XGB) was employed to predict renal tumor subtypes using 10-fold cross-validation. The evaluation was conducted using the multiclass area under the receiver operating characteristic curve (AUC). Algorithms were trained on data from one center and independently tested on data from the other center. Results The training cohort comprised n = 297 patients (64.3% clear cell renal cell cancer [RCC], 13.5% papillary renal cell carcinoma (pRCC), 7.4% chromophobe RCC, 9.4% oncocytomas, and 5.4% angiomyolipomas (AML)), and the testing cohort n = 121 patients (56.2%/16.5%/3.3%/21.5%/2.5%). The XGB algorithm demonstrated a diagnostic performance of AUC = 0.81/0.64/0.8 for venous/arterial/combined contrast phase CT in the training cohort, and AUC = 0.75/0.67/0.75 in the independent testing cohort. In pairwise comparisons, the lowest diagnostic accuracy was evident for the identification of oncocytomas (AUC = 0.57–0.69), and the highest for the identification of AMLs (AUC = 0.9–0.94) Conclusion Radiomic feature analyses can distinguish renal tumor subtypes on routinely acquired CTs, with oncocytomas being the hardest subtype to identify. Clinical relevance statement Radiomic feature analyses yield robust results for renal tumor assessment on routine CTs. Although radiologists routinely rely on arterial phase CT for renal tumor assessment and operative planning, radiomic features derived from arterial phase did not improve the accuracy of renal tumor subtype identification in our cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
10秒前
10秒前
spark810完成签到,获得积分0
11秒前
factor发布了新的文献求助10
15秒前
彭于晏应助欢呼的寻双采纳,获得10
16秒前
激动的似狮完成签到,获得积分10
32秒前
完美世界应助一杯美式采纳,获得10
37秒前
1分钟前
一杯美式发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
英俊的铭应助iris采纳,获得10
2分钟前
领导范儿应助大爷醒醒啊采纳,获得10
2分钟前
2分钟前
iris发布了新的文献求助10
2分钟前
buerger完成签到,获得积分20
2分钟前
kardeem完成签到,获得积分10
3分钟前
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
秋刀鱼不过期完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
仁爱的雁芙完成签到,获得积分10
4分钟前
Corn_Dog完成签到 ,获得积分10
4分钟前
5分钟前
81299发布了新的文献求助10
5分钟前
81299完成签到,获得积分20
5分钟前
5分钟前
手帕很忙完成签到,获得积分10
5分钟前
SciGPT应助活力鸿采纳,获得10
5分钟前
5分钟前
SDNUDRUG发布了新的文献求助10
5分钟前
6分钟前
zhang完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
半。。发布了新的文献求助10
6分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784100
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299643
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989