Multiple-Input–Multiple-Output Randomized Fuzzy Cognitive Map Method for High-Dimensional Time Series Forecasting

模糊认知图 计算机科学 系列(地层学) 时间序列 模糊逻辑 人工智能 模糊控制系统 控制理论(社会学) 数据挖掘 算法 数学 机器学习 模糊分类 控制(管理) 生物 古生物学
作者
Omid Orang,Hugo Vinicius Bitencourt,Luiz Augusto Facury de Souza,Patrícia de Oliveira e Lucas,Petrônio Cândido de Lima e Silva,Frederico Gadelha Guimarães
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (6): 3703-3715
标识
DOI:10.1109/tfuzz.2024.3379853
摘要

Fuzzy Cognitive Maps (FCMs) have demonstrated considerable success in time series forecasting and are adept at handling uncertainties and capturing the dynamics of complex systems. Nevertheless, challenges still remain in the handling of multivariate high-dimensional time series using a time-effective learning algorithm. This paper introduces MRHFCM, a new methodology for predicting high-dimensional time series in multiple-input multiple-output (MIMO) systems. MRHFCM represents a hybrid method that combines data embedding transformation, randomized high-order FCM (R-HFCM), and an echo state network (ESN). The core of MRHFCM involves a cascade of R-HFCMs termed the CR-HFCM model. Each CR-HFCM comprises three layers: the input layer, reservoir (internal layer), and output layer. Notably, only the output layer is trainable, employing the least squares minimization algorithm. The weights within each sub-reservoir are randomly chosen and remain unchanged throughout the training procedure. Three real-world high-dimensional datasets are utilized to assess the performance of the proposed MRHFCM method. The results obtained reveal that our approach outperforms some existing baseline and state-of-the-art machine learning and deep learning forecasting techniques in terms of both accuracy and parsimony.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李鑫完成签到 ,获得积分10
2秒前
所所应助Alive采纳,获得10
3秒前
3秒前
3秒前
李爱国应助heyfan采纳,获得10
3秒前
郑志凡发布了新的文献求助10
5秒前
颖火虫2588完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
meikoo发布了新的文献求助10
7秒前
Shibssjd发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
orixero应助heyfan采纳,获得10
12秒前
14秒前
66发布了新的文献求助100
15秒前
hyl发布了新的文献求助10
17秒前
17秒前
19秒前
meikoo完成签到,获得积分10
20秒前
墨冰公子完成签到,获得积分10
21秒前
yue发布了新的文献求助10
21秒前
研友_VZG7GZ应助heyfan采纳,获得10
21秒前
22秒前
22秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
pluto应助科研通管家采纳,获得50
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310754
求助须知:如何正确求助?哪些是违规求助? 2943470
关于积分的说明 8515381
捐赠科研通 2618826
什么是DOI,文献DOI怎么找? 1431439
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649675