Mapping nationwide concentrations of sulfate and nitrate in ambient PM2.5 in South Korea using machine learning with ground observation data

环境科学 空气质量指数 微粒 硫酸盐 空气污染 污染物 污染 硝酸盐 CMAQ 空间分布 空气污染物 氮氧化物 排放清单 气溶胶 大气科学 环境工程 气象学 燃烧 地理 化学 遥感 地质学 有机化学 生态学 生物
作者
Sang-Jin Lee,Jeong-Tae Ju,Jong-Jae Lee,Chang‐Keun Song,Sun-A Shin,Hae‐Jin Jung,Hye Jung Shin,Sung‐Deuk Choi
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:926: 171884-171884 被引量:3
标识
DOI:10.1016/j.scitotenv.2024.171884
摘要

Particulate matter (PM) is a major air pollutant in Northeast Asia, with frequent high PM episodes. To investigate the nationwide spatial distribution maps of PM2.5 and secondary inorganic aerosols in South Korea, prediction models for mapping SO42- and NO3- concentrations in PM2.5 were developed using machine learning with ground-based observation data. Specifically, the random forest algorithm was used in this study to predict the SO42- and NO3- concentrations at 548 air quality monitoring stations located within the representative radii of eight intensive air quality monitoring stations. The average concentrations of PM2.5, SO42-, and NO3- across the entire nation were 17.2 ± 2.8, 3.0 ± 0.6, and 3.4 ± 1.2 μg/m3, respectively. The spatial distributions of SO42- and NO3- concentrations in 2021 revealed elevated concentrations in both the western and central regions of South Korea. This result suggests that SO42- concentrations were primarily influenced by industrial activities rather than vehicle emissions, whereas NO3- concentrations were more associated with vehicle emissions. During a high PM2.5 event (November 19-21, 2021), the concentration of SO42- was primarily influenced by SOX emissions from China, while the concentration of NO3- was affected by NOX emissions from both China and Korea. The methodology developed in this study can be used to explore the chemical characteristics of PM2.5 with high spatiotemporal resolution. It can also provide valuable insights for the nationwide mitigation of secondary PM2.5 pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
认真摆烂完成签到,获得积分10
1秒前
英姑应助陈文娟采纳,获得10
1秒前
越啊完成签到,获得积分10
2秒前
文静的峻熙完成签到,获得积分10
2秒前
Ruby发布了新的文献求助10
2秒前
着急的小松鼠完成签到,获得积分10
2秒前
nicholasgxz完成签到,获得积分10
2秒前
充电宝应助Binbin采纳,获得10
2秒前
2秒前
3秒前
3秒前
5秒前
斯文的斩发布了新的文献求助10
6秒前
6秒前
高高高完成签到 ,获得积分10
6秒前
yar应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
qin希望应助科研通管家采纳,获得10
9秒前
xxxllllll发布了新的文献求助10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
扫地888完成签到 ,获得积分10
9秒前
DijiaXu应助科研通管家采纳,获得10
9秒前
whatever应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
whatever应助科研通管家采纳,获得10
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
whatever应助科研通管家采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014