Mapping nationwide concentrations of sulfate and nitrate in ambient PM2.5 in South Korea using machine learning with ground observation data

环境科学 空气质量指数 微粒 硫酸盐 空气污染 污染物 污染 硝酸盐 CMAQ 空间分布 空气污染物 氮氧化物 排放清单 气溶胶 大气科学 环境工程 气象学 燃烧 地理 化学 遥感 地质学 有机化学 生物 生态学
作者
Sang-Jin Lee,Jeong-Tae Ju,Jong-Jae Lee,Chang‐Keun Song,Sun-A Shin,Hae‐Jin Jung,Hye Jung Shin,Sung‐Deuk Choi
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:926: 171884-171884 被引量:3
标识
DOI:10.1016/j.scitotenv.2024.171884
摘要

Particulate matter (PM) is a major air pollutant in Northeast Asia, with frequent high PM episodes. To investigate the nationwide spatial distribution maps of PM2.5 and secondary inorganic aerosols in South Korea, prediction models for mapping SO42- and NO3- concentrations in PM2.5 were developed using machine learning with ground-based observation data. Specifically, the random forest algorithm was used in this study to predict the SO42- and NO3- concentrations at 548 air quality monitoring stations located within the representative radii of eight intensive air quality monitoring stations. The average concentrations of PM2.5, SO42-, and NO3- across the entire nation were 17.2 ± 2.8, 3.0 ± 0.6, and 3.4 ± 1.2 μg/m3, respectively. The spatial distributions of SO42- and NO3- concentrations in 2021 revealed elevated concentrations in both the western and central regions of South Korea. This result suggests that SO42- concentrations were primarily influenced by industrial activities rather than vehicle emissions, whereas NO3- concentrations were more associated with vehicle emissions. During a high PM2.5 event (November 19-21, 2021), the concentration of SO42- was primarily influenced by SOX emissions from China, while the concentration of NO3- was affected by NOX emissions from both China and Korea. The methodology developed in this study can be used to explore the chemical characteristics of PM2.5 with high spatiotemporal resolution. It can also provide valuable insights for the nationwide mitigation of secondary PM2.5 pollution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助qqq采纳,获得10
1秒前
1秒前
丘比特应助小白鼠采纳,获得10
1秒前
NexusExplorer应助霸气靖雁采纳,获得10
1秒前
今后应助ZeSheng采纳,获得10
2秒前
2秒前
2秒前
YAMO一完成签到,获得积分10
3秒前
Rrr发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
3秒前
Ming Chen发布了新的文献求助10
3秒前
3秒前
3秒前
彭于晏应助zhendezy采纳,获得10
4秒前
彩色短靴发布了新的文献求助10
4秒前
5秒前
5秒前
Lxk完成签到,获得积分10
5秒前
6秒前
111关闭了111文献求助
6秒前
锅架了发布了新的文献求助10
7秒前
难过飞瑶发布了新的文献求助10
8秒前
激昂的逊完成签到,获得积分10
9秒前
Seathern发布了新的文献求助10
10秒前
明亮的老四完成签到 ,获得积分10
10秒前
香蕉觅云应助二二采纳,获得10
11秒前
南敏株发布了新的文献求助10
11秒前
科目三应助鹏飞九天采纳,获得10
12秒前
fern完成签到,获得积分10
12秒前
小何发布了新的文献求助10
13秒前
一路生花完成签到,获得积分10
13秒前
激昂的逊发布了新的文献求助10
14秒前
ryan发布了新的文献求助10
14秒前
无极微光应助Rrr采纳,获得20
14秒前
14秒前
哈哈哈完成签到,获得积分10
15秒前
凌寒233完成签到 ,获得积分20
17秒前
KKKZ发布了新的文献求助10
18秒前
princess发布了新的文献求助20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609846
求助须知:如何正确求助?哪些是违规求助? 4694420
关于积分的说明 14882214
捐赠科研通 4720449
什么是DOI,文献DOI怎么找? 2544941
邀请新用户注册赠送积分活动 1509785
关于科研通互助平台的介绍 1473002