Mapping nationwide concentrations of sulfate and nitrate in ambient PM2.5 in South Korea using machine learning with ground observation data

环境科学 空气质量指数 微粒 硫酸盐 空气污染 污染物 污染 硝酸盐 CMAQ 空间分布 空气污染物 氮氧化物 排放清单 气溶胶 大气科学 环境工程 气象学 燃烧 地理 化学 遥感 地质学 有机化学 生物 生态学
作者
Sang-Jin Lee,Jeong-Tae Ju,Jong-Jae Lee,Chang‐Keun Song,Sun-A Shin,Hae‐Jin Jung,Hye Jung Shin,Sung‐Deuk Choi
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:926: 171884-171884 被引量:3
标识
DOI:10.1016/j.scitotenv.2024.171884
摘要

Particulate matter (PM) is a major air pollutant in Northeast Asia, with frequent high PM episodes. To investigate the nationwide spatial distribution maps of PM2.5 and secondary inorganic aerosols in South Korea, prediction models for mapping SO42- and NO3- concentrations in PM2.5 were developed using machine learning with ground-based observation data. Specifically, the random forest algorithm was used in this study to predict the SO42- and NO3- concentrations at 548 air quality monitoring stations located within the representative radii of eight intensive air quality monitoring stations. The average concentrations of PM2.5, SO42-, and NO3- across the entire nation were 17.2 ± 2.8, 3.0 ± 0.6, and 3.4 ± 1.2 μg/m3, respectively. The spatial distributions of SO42- and NO3- concentrations in 2021 revealed elevated concentrations in both the western and central regions of South Korea. This result suggests that SO42- concentrations were primarily influenced by industrial activities rather than vehicle emissions, whereas NO3- concentrations were more associated with vehicle emissions. During a high PM2.5 event (November 19-21, 2021), the concentration of SO42- was primarily influenced by SOX emissions from China, while the concentration of NO3- was affected by NOX emissions from both China and Korea. The methodology developed in this study can be used to explore the chemical characteristics of PM2.5 with high spatiotemporal resolution. It can also provide valuable insights for the nationwide mitigation of secondary PM2.5 pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六个核桃完成签到,获得积分10
刚刚
刚刚
刚刚
浮游应助舒服的牛青采纳,获得10
刚刚
激情的剑封完成签到,获得积分10
刚刚
xiaoyao完成签到,获得积分10
1秒前
111完成签到,获得积分10
1秒前
研友_LJpjgZ完成签到,获得积分10
1秒前
无花果应助Tumbleweed668采纳,获得10
1秒前
永远少年发布了新的文献求助10
2秒前
chunfengfusu应助苏日古嘎采纳,获得10
2秒前
黄颖完成签到 ,获得积分10
3秒前
可爱的函函应助贴贴采纳,获得10
4秒前
大胖小子完成签到,获得积分10
4秒前
hahamissyu完成签到,获得积分10
4秒前
Akim应助leonieliu采纳,获得10
4秒前
高挑的宛海完成签到,获得积分10
4秒前
4秒前
5秒前
怡然新梅发布了新的文献求助10
5秒前
21发布了新的文献求助10
5秒前
为喵驾车的月亮完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
zhanjl13完成签到,获得积分10
6秒前
充电宝应助Thomas采纳,获得10
6秒前
没有Toyota完成签到,获得积分10
7秒前
8秒前
永远少年完成签到,获得积分10
8秒前
iuuuu完成签到 ,获得积分10
9秒前
9秒前
Lucas应助高挑的宛海采纳,获得10
9秒前
9秒前
zjy完成签到,获得积分10
10秒前
今后应助武海素采纳,获得10
11秒前
11秒前
咕噜坚果完成签到,获得积分10
11秒前
11秒前
backerry发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192585
求助须知:如何正确求助?哪些是违规求助? 4375495
关于积分的说明 13625426
捐赠科研通 4229959
什么是DOI,文献DOI怎么找? 2320250
邀请新用户注册赠送积分活动 1318545
关于科研通互助平台的介绍 1268863