Identification of volatile biomarkers for lung cancer from different histological sources: A comprehensive study

肺癌 乙醛 化学 癌变 癌症 生物化学 癌症研究 医学 内科学 乙醇
作者
Wei Lv,Wenmin Shi,Zhijuan Zhang,Lihua Ru,Weisheng Feng,Hanxiao Tang,Xiangqi Wang
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:690: 115527-115527 被引量:2
标识
DOI:10.1016/j.ab.2024.115527
摘要

The identification of noninvasive volatile biomarkers for lung cancer is a significant clinical challenge. Through in vitro studies, the recognition of altered metabolism in cell volatile organic compound (VOC) emitting profile, along with the occurrence of oncogenesis, provides insight into the biochemical pathways involved in the production and metabolism of lung cancer volatile biomarkers. In this research, for the first time, a comprehensive comparative analysis of the volatile metabolites in NSCLS cells (A549), SCLC cells (H446), lung normal cells (BEAS-2B), as well as metabolites in both the oxidative stress (OS) group and control group. Specifically, the combination of eleven VOCs, including n-dodecane, acetaldehyde, isopropylbenzene, p-ethyltoluene and cis-1,3-dichloropropene, exhibited potential as volatile biomarkers for lung cancer originating from two different histological sources. Furthermore, the screening process in A549 cell lines resulted in the identification of three exclusive biomarkers, isopropylbenzene, formaldehyde and bromoform. Similarly, the exclusive biomarkers 1,2,4-trimethylbenzene, p-ethyltoluene, and cis-1,3-dichloropropene were present in the H446 cell line. Additionally, significant changes in trans-2-pentene, acetaldehyde, 1,2,4-trimethylbenzene, and bromoform were observed, indicating a strong association with OS. These findings highlight the potential of volatile biomarkers profiling as a means of noninvasive identification for lung cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
航航完成签到,获得积分10
刚刚
echooo发布了新的文献求助10
1秒前
独特的鹅发布了新的文献求助10
2秒前
所所应助lawang采纳,获得10
2秒前
李喵喵完成签到,获得积分20
2秒前
充电宝应助lawang采纳,获得10
2秒前
万能图书馆应助JLLLLLLLL采纳,获得30
2秒前
明理的安莲完成签到,获得积分10
2秒前
SciGPT应助lawang采纳,获得10
2秒前
完美世界应助lawang采纳,获得10
2秒前
大模型应助lawang采纳,获得10
2秒前
调皮嫣娆发布了新的文献求助10
2秒前
希望天下0贩的0应助lawang采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Owen应助lawang采纳,获得10
3秒前
在水一方应助lawang采纳,获得10
3秒前
潇洒吐司发布了新的文献求助10
3秒前
LYB吕发布了新的文献求助10
3秒前
4秒前
青年才俊发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
脑洞疼应助AAAA采纳,获得10
5秒前
邱燈发布了新的文献求助20
5秒前
yupguo完成签到,获得积分10
5秒前
kiko完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
fdhineodobh花开富贵完成签到,获得积分10
6秒前
科研通AI2S应助77采纳,获得10
6秒前
爆米花应助刚刚一会儿采纳,获得10
6秒前
6秒前
xxxr发布了新的文献求助10
6秒前
7秒前
7秒前
丘比特应助sssss采纳,获得10
7秒前
研友_84WJXZ完成签到,获得积分20
7秒前
dew应助泯工采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163