染色质
核小体
ATP水解
染色质结构重塑复合物
染色质重塑
生物物理学
化学
ATP酶
细胞生物学
DNA
生物
酶
生物化学
作者
Petra Vizjak,Dieter Kamp,Nicola Hepp,Alessandro Scacchetti,Mariano Gonzalez Pisfil,J.D. Bartho,Mario Halić,Peter B. Becker,Michaela Smolle,Johannes Stigler,Felix Mueller‐Planitz
标识
DOI:10.1038/s41594-024-01290-x
摘要
How chromatin enzymes work in condensed chromatin and how they maintain diffusional mobility inside remains unexplored. Here we investigated these challenges using the Drosophila ISWI remodeling ATPase, which slides nucleosomes along DNA. Folding of chromatin fibers did not affect sliding in vitro. Catalytic rates were also comparable in- and outside of chromatin condensates. ISWI cross-links and thereby stiffens condensates, except when ATP hydrolysis is possible. Active hydrolysis is also required for ISWI's mobility in condensates. Energy from ATP hydrolysis therefore fuels ISWI's diffusion through chromatin and prevents ISWI from cross-linking chromatin. Molecular dynamics simulations of a 'monkey-bar' model in which ISWI grabs onto neighboring nucleosomes, then withdraws from one before rebinding another in an ATP hydrolysis-dependent manner, qualitatively agree with our data. We speculate that monkey-bar mechanisms could be shared with other chromatin factors and that changes in chromatin dynamics caused by mutations in remodelers could contribute to pathologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI