Image‐based remote evaluation of PASI scores with psoriasis by the YOLO‐v4 algorithm

银屑病 算法 医学 皮肤病科 计算机科学 人工智能
作者
Heng Yin,Hui Chen,Wei Zhang,J. Zhang,Tao Cui,Yunpeng Li,Nan Yu,Yingyao Yu,Hai Long,Rong Xiao,Yuwen Su,Yaping Li,Guiying Zhang,Yixin Tan,Haijing Wu,Qianjin Lu
出处
期刊:Experimental Dermatology [Wiley]
卷期号:33 (4) 被引量:2
标识
DOI:10.1111/exd.15082
摘要

Abstract As a chronic relapsing disease, psoriasis is characterized by widespread skin lesions. The Psoriasis Area and Severity Index (PASI) is the most frequently utilized tool for evaluating the severity of psoriasis in clinical practice. Nevertheless, long‐term monitoring and precise evaluation pose difficulties for dermatologists and patients, which is time‐consuming, subjective and prone to evaluation bias. To develop a deep learning system with high accuracy and speed to assist PASI evaluation, we collected 2657 high‐quality images from 1486 psoriasis patients, and images were segmented and annotated. Then, we utilized the YOLO‐v4 algorithm to establish the model via four modules, we also conducted a human‐computer comparison through quadratic weighted Kappa (QWK) coefficients and intra‐class correlation coefficients (ICC). The YOLO‐v4 algorithm was selected for model training and optimization compared with the YOLOv3, RetinaNet, EfficientDet and Faster_rcnn. The model evaluation results of mean average precision (mAP) for various lesion features were as follows: erythema, mAP = 0.903; scale, mAP = 0.908; and induration, mAP = 0.882. In addition, the results of human‐computer comparison also showed a median consistency for the skin lesion severity and an excellent consistency for the area and PASI score. Finally, an intelligent PASI app was established for remote disease assessment and course management, with a pleasurable agreement with dermatologists. Taken together, we proposed an intelligent PASI app based on the image YOLO‐v4 algorithm that can assist dermatologists in long‐term and objective PASI scoring, shedding light on similar clinical assessments that can be assisted by computers in a time‐saving and objective manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sen123完成签到,获得积分10
1秒前
无语的断缘完成签到,获得积分10
4秒前
24K纯帅完成签到,获得积分10
5秒前
日尧完成签到,获得积分10
5秒前
dreamode应助靓丽的明辉采纳,获得10
11秒前
高大绝义完成签到,获得积分10
13秒前
aaa完成签到,获得积分10
14秒前
猪猪hero完成签到,获得积分10
16秒前
踏实的无敌完成签到,获得积分10
19秒前
violetlishu完成签到 ,获得积分10
19秒前
xhemers发布了新的文献求助10
20秒前
自然千山完成签到,获得积分10
20秒前
又要整理桌面了完成签到 ,获得积分10
21秒前
离子电池完成签到,获得积分10
23秒前
科研小笨猪完成签到,获得积分10
26秒前
27秒前
小赵完成签到 ,获得积分10
28秒前
无味完成签到,获得积分10
32秒前
世界和平完成签到 ,获得积分10
33秒前
康复小白完成签到 ,获得积分10
33秒前
Mini完成签到,获得积分10
33秒前
伶俐的寒凡完成签到 ,获得积分10
34秒前
穆一手完成签到 ,获得积分10
34秒前
36秒前
清风完成签到 ,获得积分10
36秒前
刘刘完成签到,获得积分10
39秒前
fiu~完成签到 ,获得积分10
41秒前
41秒前
萤火虫完成签到,获得积分10
44秒前
dreamode应助xhemers采纳,获得10
49秒前
狼洪明完成签到,获得积分10
52秒前
01259完成签到 ,获得积分10
54秒前
花生王子完成签到 ,获得积分10
56秒前
搞怪的凡蕾完成签到,获得积分10
56秒前
nico完成签到,获得积分10
57秒前
记忆完成签到,获得积分10
58秒前
xrkxrk完成签到 ,获得积分0
1分钟前
sunsun10086完成签到 ,获得积分10
1分钟前
panfan完成签到,获得积分20
1分钟前
科研通AI2S应助凌寻冬采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566677
求助须知:如何正确求助?哪些是违规求助? 3139426
关于积分的说明 9431834
捐赠科研通 2840268
什么是DOI,文献DOI怎么找? 1560990
邀请新用户注册赠送积分活动 730121
科研通“疑难数据库(出版商)”最低求助积分说明 717854