光激发
共价键
光催化
碳量子点
碳纤维
化学
电荷(物理)
还原(数学)
光化学
电子
量子点
材料科学
纳米技术
原子物理学
催化作用
物理
有机化学
量子力学
激发态
几何学
数学
复合数
复合材料
作者
Huiyang Ma,Tianyu Wang,Yifan Xu,Weiliang Shi,Ren Ma,Zhengqiang Xia,Qi Yang,Gang Xie,Sanping Chen
标识
DOI:10.1016/j.apcatb.2024.123857
摘要
How to coordinate the catalytic sites and the charge supply in CDs@MOFs hybrids to accelerate carriers transferring, suppress charge recombination and maximize charge transferring is a challenge. Here, the hybrid of PQ-CDs6.67@Cu-TCA fabricated by Cu-TCA (TCA = 4,4',4′'-nitrilotribenzoic acid) encapsulating 9,10-phenanthraquinone (9,10-PQ) modified carbon quantum dots (PQ-CDs), which was fully characterized and used for photocatalytic CO2 reduction. Covalent-bonding of CDs with the paddle-wheel Cu structure and 9,10-PQ provides parallel electron pathways for accelerating electron transferring and minimum carrier recombination. PQ-CDs6.67@Cu-TCA exhibited an excellent electron consumption rate (Rele) of 393.98 μmol·g−1·h−1 and a high CH4 yield of 44.43 μmol·g−1·h−1 with a selectivity of 90.22%, being far superior to most carbon materials/MOFs-based heterojunctions. Research evidences that through the parallel electron pathways, photon collection and transferring of PQ-CDs with optimal loading-amount meet chemical-producing Cu2+ and 9,10-PQ active centers, maximally improving electron utilization and suppressing the internal friction in PQ-CDs6.67@Cu-TCA.
科研通智能强力驱动
Strongly Powered by AbleSci AI