WSBCV: A data-driven cross-version defect model via multi-objective optimization and incremental representation learning

计算机科学 代表(政治) 人工智能 机器学习 政治学 政治 法学
作者
Nana Zhang,Kun Zhu,Weiping Ding,Dandan Zhu
出处
期刊:Information Sciences [Elsevier]
卷期号:669: 120595-120595
标识
DOI:10.1016/j.ins.2024.120595
摘要

Cross-version defect prediction (CVDP) refers to training an excellent model on tagged defect data in a previously released project version, and then performing defect prediction on an unlabeled instance module in the current version. Nevertheless, the complicated internal intrinsic construction hidden behind the code defects makes it difficult for the previous cross-version defect models to capture more discriminative software features, and seriously restrains the CVDP performance. In this study, we propose an intelligent data-driven CVDP model named WSBCV based on multi-objective optimization and incremental representation learning. We firstly leverage an advanced deep generation adversarial network – WGAN-GP (Wasserstein GAN with Gradient Penalty) to perform data augmentation, including balancing defect classes and synthesizing abundant training instances. Secondly, a multi-objective SPEA/R (Strength Pareto-based Evolutionary Algorithm / Reference) feature selection optimization method is built to effectively search the fewest representative feature subsets while achieving the minimum error. Finally, a powerful defect predictor for CVDP based on the BLS (Broad Learning System) with incremental learning is built to learn excellent feature representations and achieve incremental online model update quickly. Experimental results across 32 cross-version pairs from 45 version demonstrate that the proposed SPEA/R, BLS and WSBCV all have statistically significant difference advantages compared to ten multi-objective feature selection approaches, six defect predictors and two CVDP models, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
屹舟完成签到,获得积分10
1秒前
zjudxn关注了科研通微信公众号
1秒前
2秒前
2秒前
科研通AI5应助hu970采纳,获得10
2秒前
2秒前
艺玲发布了新的文献求助10
3秒前
咚咚咚完成签到,获得积分10
3秒前
芋圆Z.完成签到,获得积分10
3秒前
atad2发布了新的文献求助10
3秒前
li梨完成签到,获得积分10
3秒前
4秒前
晏小敏完成签到,获得积分10
4秒前
爆米花应助风中寄云采纳,获得10
5秒前
屹舟发布了新的文献求助10
5秒前
Dou完成签到,获得积分10
5秒前
白泯完成签到,获得积分10
6秒前
1ssd发布了新的文献求助10
6秒前
667发布了新的文献求助10
6秒前
小二郎应助辰柒采纳,获得10
7秒前
8秒前
8秒前
clear完成签到,获得积分20
8秒前
8秒前
orixero应助congguitar采纳,获得10
8秒前
Evan完成签到,获得积分10
8秒前
YANG发布了新的文献求助10
9秒前
9秒前
123发布了新的文献求助10
9秒前
sunzhiyu233发布了新的文献求助10
10秒前
Raul完成签到 ,获得积分10
10秒前
10秒前
伯尔尼圆白菜完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
buuyoo完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759