WSBCV: A data-driven cross-version defect model via multi-objective optimization and incremental representation learning

计算机科学 代表(政治) 人工智能 机器学习 政治学 政治 法学
作者
Nana Zhang,Kun Zhu,Weiping Ding,Dandan Zhu
出处
期刊:Information Sciences [Elsevier]
卷期号:669: 120595-120595
标识
DOI:10.1016/j.ins.2024.120595
摘要

Cross-version defect prediction (CVDP) refers to training an excellent model on tagged defect data in a previously released project version, and then performing defect prediction on an unlabeled instance module in the current version. Nevertheless, the complicated internal intrinsic construction hidden behind the code defects makes it difficult for the previous cross-version defect models to capture more discriminative software features, and seriously restrains the CVDP performance. In this study, we propose an intelligent data-driven CVDP model named WSBCV based on multi-objective optimization and incremental representation learning. We firstly leverage an advanced deep generation adversarial network – WGAN-GP (Wasserstein GAN with Gradient Penalty) to perform data augmentation, including balancing defect classes and synthesizing abundant training instances. Secondly, a multi-objective SPEA/R (Strength Pareto-based Evolutionary Algorithm / Reference) feature selection optimization method is built to effectively search the fewest representative feature subsets while achieving the minimum error. Finally, a powerful defect predictor for CVDP based on the BLS (Broad Learning System) with incremental learning is built to learn excellent feature representations and achieve incremental online model update quickly. Experimental results across 32 cross-version pairs from 45 version demonstrate that the proposed SPEA/R, BLS and WSBCV all have statistically significant difference advantages compared to ten multi-objective feature selection approaches, six defect predictors and two CVDP models, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
CipherSage应助枝枝冬采纳,获得30
1秒前
科目三应助Vegccc采纳,获得10
1秒前
HanJinyu发布了新的文献求助30
1秒前
大个应助HaoHao04采纳,获得10
2秒前
2秒前
3秒前
Bosen发布了新的文献求助10
3秒前
4秒前
4秒前
Arthur发布了新的文献求助10
4秒前
Albee完成签到,获得积分10
4秒前
酷酷小天鹅完成签到,获得积分10
4秒前
spwan应助研友_屈不愁采纳,获得10
5秒前
6秒前
6秒前
标致贞完成签到 ,获得积分10
6秒前
6秒前
doubles完成签到,获得积分10
7秒前
bot_753发布了新的文献求助10
8秒前
阜睿发布了新的文献求助10
8秒前
9秒前
动听服饰发布了新的文献求助10
9秒前
情怀应助天tian采纳,获得10
9秒前
灵巧的孤容完成签到,获得积分10
9秒前
OFish完成签到,获得积分10
9秒前
俭朴涵山发布了新的文献求助10
9秒前
桶装乐事完成签到,获得积分10
9秒前
ZSXL完成签到,获得积分10
9秒前
wrr完成签到,获得积分10
10秒前
蔡蔡完成签到 ,获得积分10
10秒前
10秒前
上官若男应助清秀的月亮采纳,获得10
10秒前
乐正乘风发布了新的文献求助10
11秒前
柔弱的鼠标完成签到,获得积分10
11秒前
zcydbttj2011完成签到 ,获得积分10
12秒前
无奈的又晴完成签到,获得积分10
12秒前
Vegccc发布了新的文献求助10
12秒前
感动的寒风完成签到,获得积分10
12秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3220415
求助须知:如何正确求助?哪些是违规求助? 2868993
关于积分的说明 8163872
捐赠科研通 2535952
什么是DOI,文献DOI怎么找? 1368439
科研通“疑难数据库(出版商)”最低求助积分说明 645208
邀请新用户注册赠送积分活动 618713