Prediction of hardness or yield strength for ODS steels based on machine learning

材料科学 高分辨率透射电子显微镜 透射电子显微镜 扫描电子显微镜 产量(工程) 氧化物 微观结构 冶金 色散(光学) 粒度 复合材料 纳米技术 物理 光学
作者
Tian-Xing Yang,Peng Dou
出处
期刊:Materials Characterization [Elsevier BV]
卷期号:211: 113886-113886 被引量:3
标识
DOI:10.1016/j.matchar.2024.113886
摘要

Oxide dispersion strengthened (ODS) steel has emerged as a highly promising cladding materials for Generation IV nuclear reactors due to its exceptional mechanical properties and remarkable resistance to irradiation, corrosion, and oxidation. In this study, the matrix grain morphology, dispersion morphology, and phases of oxide particles in eight ODS steels were studied by scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The effect of grain refinement in Al-free ODS steels is better than that in Al-added and Zr-added ODS steels. In Al-added ODS steels, the co-addition of Ti and Zr elements could improve the dispersion morphology of nano-sized particles. In this study, more than 500 data from ODS steels were collected, and 420 items were used for machine learning (ML) modeling. Several ML models were developed to evaluate the predictive performance of the dataset of hardness and yield strength. The results indicate that two XGBoost (XGB) models, which show the lowest mean absolute error (MAE) values and the highest R2 values among the six ML models, have the best predictive performance. Therefore, the two XGB models were selected to predict the hardness and yield strength of ODS steels. The independent variables included chemical compositions, test conditions, and microstructural descriptors. A high linear correlation exists between Zr and Ti. Regarding chemical composition, Y2O3 has the most significant effect on hardness and yield strength. The predicted values of hardness & yield strength are in good agreement with the corresponding experimental values. The two generalized ML models show the potential for accurate prediction of hardness & yield strength in ODS steels, thereby providing a valuable theoretical framework for the design and optimization of novel ODS steels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平平无奇打工人完成签到 ,获得积分10
刚刚
Young完成签到 ,获得积分10
1秒前
陳某完成签到,获得积分10
2秒前
赖道之发布了新的文献求助10
3秒前
一区的王完成签到 ,获得积分10
4秒前
搬砖的化学男完成签到 ,获得积分0
5秒前
满意的迎南完成签到 ,获得积分10
5秒前
wang完成签到,获得积分10
5秒前
Lynn完成签到 ,获得积分10
11秒前
踏实的无敌完成签到,获得积分10
13秒前
14秒前
星辰大海应助淡然的熊猫采纳,获得10
21秒前
piaoaxi完成签到 ,获得积分10
22秒前
mol完成签到 ,获得积分10
22秒前
23秒前
烊烊完成签到,获得积分10
26秒前
yang杨完成签到,获得积分10
26秒前
thuuu完成签到,获得积分10
28秒前
INBI发布了新的文献求助30
28秒前
Catherkk完成签到,获得积分10
28秒前
粱乘风完成签到,获得积分10
28秒前
Belinda完成签到 ,获得积分10
29秒前
AN完成签到,获得积分10
30秒前
myg123完成签到 ,获得积分10
32秒前
Seth完成签到,获得积分10
33秒前
33秒前
神勇友灵完成签到,获得积分10
33秒前
WL完成签到 ,获得积分10
37秒前
39秒前
qcl完成签到,获得积分10
43秒前
45秒前
淡然的熊猫完成签到,获得积分10
45秒前
顺心的安珊完成签到 ,获得积分10
46秒前
47秒前
vsvsgo发布了新的文献求助10
47秒前
负责的白风完成签到,获得积分10
48秒前
shy完成签到,获得积分10
49秒前
life完成签到,获得积分10
50秒前
夏姬宁静完成签到,获得积分10
51秒前
高兴的凝蝶完成签到,获得积分10
52秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022