Prediction of hardness or yield strength for ODS steels based on machine learning

材料科学 高分辨率透射电子显微镜 透射电子显微镜 扫描电子显微镜 产量(工程) 氧化物 微观结构 冶金 色散(光学) 粒度 复合材料 纳米技术 物理 光学
作者
Tian-Xing Yang,Peng Dou
出处
期刊:Materials Characterization [Elsevier BV]
卷期号:211: 113886-113886 被引量:3
标识
DOI:10.1016/j.matchar.2024.113886
摘要

Oxide dispersion strengthened (ODS) steel has emerged as a highly promising cladding materials for Generation IV nuclear reactors due to its exceptional mechanical properties and remarkable resistance to irradiation, corrosion, and oxidation. In this study, the matrix grain morphology, dispersion morphology, and phases of oxide particles in eight ODS steels were studied by scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The effect of grain refinement in Al-free ODS steels is better than that in Al-added and Zr-added ODS steels. In Al-added ODS steels, the co-addition of Ti and Zr elements could improve the dispersion morphology of nano-sized particles. In this study, more than 500 data from ODS steels were collected, and 420 items were used for machine learning (ML) modeling. Several ML models were developed to evaluate the predictive performance of the dataset of hardness and yield strength. The results indicate that two XGBoost (XGB) models, which show the lowest mean absolute error (MAE) values and the highest R2 values among the six ML models, have the best predictive performance. Therefore, the two XGB models were selected to predict the hardness and yield strength of ODS steels. The independent variables included chemical compositions, test conditions, and microstructural descriptors. A high linear correlation exists between Zr and Ti. Regarding chemical composition, Y2O3 has the most significant effect on hardness and yield strength. The predicted values of hardness & yield strength are in good agreement with the corresponding experimental values. The two generalized ML models show the potential for accurate prediction of hardness & yield strength in ODS steels, thereby providing a valuable theoretical framework for the design and optimization of novel ODS steels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
踏实绮露完成签到 ,获得积分10
1秒前
1秒前
iam小羊人完成签到,获得积分20
2秒前
2秒前
3秒前
失眠无声完成签到,获得积分10
3秒前
Jiang完成签到,获得积分10
4秒前
大模型应助称心的乘云采纳,获得10
4秒前
桐桐应助lw采纳,获得10
5秒前
5秒前
Hello应助连冬萱采纳,获得30
6秒前
6秒前
7秒前
Rain_BJ发布了新的文献求助10
7秒前
Carolin完成签到,获得积分10
8秒前
孙宗帅发布了新的文献求助10
8秒前
8秒前
iam小羊人发布了新的文献求助20
8秒前
9秒前
下雨天睡个懒觉完成签到,获得积分10
10秒前
丘比特应助强壮的美女采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
认真灯泡完成签到,获得积分10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
子车茗应助科研通管家采纳,获得30
11秒前
科目三应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得30
11秒前
爆米花应助科研通管家采纳,获得10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702