Prediction of hardness or yield strength for ODS steels based on machine learning

材料科学 高分辨率透射电子显微镜 透射电子显微镜 扫描电子显微镜 产量(工程) 氧化物 微观结构 冶金 色散(光学) 粒度 复合材料 纳米技术 物理 光学
作者
Tian-Xing Yang,Peng Dou
出处
期刊:Materials Characterization [Elsevier BV]
卷期号:211: 113886-113886 被引量:3
标识
DOI:10.1016/j.matchar.2024.113886
摘要

Oxide dispersion strengthened (ODS) steel has emerged as a highly promising cladding materials for Generation IV nuclear reactors due to its exceptional mechanical properties and remarkable resistance to irradiation, corrosion, and oxidation. In this study, the matrix grain morphology, dispersion morphology, and phases of oxide particles in eight ODS steels were studied by scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The effect of grain refinement in Al-free ODS steels is better than that in Al-added and Zr-added ODS steels. In Al-added ODS steels, the co-addition of Ti and Zr elements could improve the dispersion morphology of nano-sized particles. In this study, more than 500 data from ODS steels were collected, and 420 items were used for machine learning (ML) modeling. Several ML models were developed to evaluate the predictive performance of the dataset of hardness and yield strength. The results indicate that two XGBoost (XGB) models, which show the lowest mean absolute error (MAE) values and the highest R2 values among the six ML models, have the best predictive performance. Therefore, the two XGB models were selected to predict the hardness and yield strength of ODS steels. The independent variables included chemical compositions, test conditions, and microstructural descriptors. A high linear correlation exists between Zr and Ti. Regarding chemical composition, Y2O3 has the most significant effect on hardness and yield strength. The predicted values of hardness & yield strength are in good agreement with the corresponding experimental values. The two generalized ML models show the potential for accurate prediction of hardness & yield strength in ODS steels, thereby providing a valuable theoretical framework for the design and optimization of novel ODS steels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuangcheng发布了新的文献求助10
刚刚
内向凌丝完成签到,获得积分10
1秒前
青羽落霞发布了新的文献求助30
1秒前
英姑应助yoyo采纳,获得10
1秒前
充电宝应助to高坚果采纳,获得10
1秒前
科研小南瓜完成签到 ,获得积分10
1秒前
2秒前
科研小白完成签到,获得积分10
2秒前
健忘捕发布了新的文献求助10
2秒前
可爱的函函应助nn采纳,获得10
3秒前
乔垣结衣发布了新的文献求助30
3秒前
3秒前
Neptune发布了新的文献求助10
4秒前
4秒前
丘比特应助俊逸鹏笑采纳,获得10
5秒前
FashionBoy应助张大侠采纳,获得10
5秒前
5秒前
斯文败类应助孙文远采纳,获得10
5秒前
layman完成签到,获得积分10
6秒前
6秒前
luqi发布了新的文献求助10
6秒前
7秒前
7秒前
思源应助哦吼吼采纳,获得10
7秒前
YOLO完成签到,获得积分10
8秒前
8秒前
9秒前
winwin完成签到,获得积分10
9秒前
doudou完成签到,获得积分10
9秒前
HTX完成签到,获得积分10
9秒前
领导范儿应助健忘捕采纳,获得10
9秒前
情怀应助落后的士萧采纳,获得30
10秒前
学术噗噗完成签到,获得积分10
10秒前
10秒前
苏生鑫发布了新的文献求助10
10秒前
10秒前
caisy完成签到,获得积分10
10秒前
机灵安白完成签到,获得积分10
10秒前
su发布了新的文献求助10
10秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969033
求助须知:如何正确求助?哪些是违规求助? 3513900
关于积分的说明 11170818
捐赠科研通 3249256
什么是DOI,文献DOI怎么找? 1794708
邀请新用户注册赠送积分活动 875326
科研通“疑难数据库(出版商)”最低求助积分说明 804759