CCDet: Confidence-Consistent Learning for Dense Object Detection

假阳性悖论 一致性(知识库) 计算机科学 人工智能 探测器 目标检测 模式识别(心理学) 集合(抽象数据类型) 对象(语法) 特征(语言学) 机器学习 数据挖掘 语言学 电信 哲学 程序设计语言
作者
Chang Liu,Xiaomao Li,Weiping Xiao,Shaorong Xie
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2746-2758 被引量:1
标识
DOI:10.1109/tip.2024.3378457
摘要

Modern detectors commonly employ classification scores to reflect the localization quality of detection results. However, there exists an inconsistency between them, misguiding the selection of high-quality predictions and providing unreliable results for downstream applications. In this paper, we find that the root of this confidence inconsistency lies in the inaccurate IoU estimation and the spatial misalignment of the learned features between the classification and localization tasks. Therefore, a Confidence-Consistent Detector (CCDet) which includes the Distribution-based IoU Prediction (DIP) and Consistency-aware label assignment (CLA), is proposed. DIP provides more stable and accurate IoU estimation by learning the probability distribution over the IoU range and employing the expectation as the predicted IoU. CLA adopts both the prediction performance and consistency degree of samples as assignment metrics to select positives, which guides the classification and localization tasks to promote similar feature distribution. Comprehensive experiments demonstrate that CCDet can effectively mitigate the confidence inconsistency between classification and localization, and achieve stable improvement across different baselines. On the test-dev set of MS COCO, CCDet acquires a single-model single-scale AP of 50.1%, surpassing most of the existing object detectors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yynlty发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
xu关注了科研通微信公众号
2秒前
失眠的紫菱完成签到,获得积分10
2秒前
长情青烟完成签到,获得积分10
2秒前
高贵振家发布了新的文献求助10
2秒前
南方有我发布了新的文献求助10
3秒前
大个应助佳佳采纳,获得10
3秒前
nano完成签到,获得积分10
3秒前
自信的怡完成签到,获得积分20
3秒前
煜清清发布了新的文献求助10
3秒前
4秒前
科研大圣发布了新的文献求助10
4秒前
cxy0714发布了新的文献求助10
4秒前
酷波er应助舒服的小之采纳,获得30
4秒前
4秒前
4秒前
53关闭了53文献求助
4秒前
4秒前
佳润发布了新的文献求助10
5秒前
5秒前
李爱国应助Yolanda采纳,获得10
5秒前
大模型应助ar采纳,获得10
5秒前
驰骋发布了新的文献求助10
5秒前
Syun完成签到,获得积分10
5秒前
嘟嘟发布了新的文献求助150
5秒前
科研通AI6应助清脆巧蕊采纳,获得10
5秒前
6秒前
你好发布了新的文献求助10
6秒前
小白完成签到,获得积分10
7秒前
可乐完成签到,获得积分20
7秒前
7秒前
科目三应助木木采纳,获得10
7秒前
无昵称发布了新的文献求助10
8秒前
8秒前
完美世界应助武世杰采纳,获得10
8秒前
9秒前
吴裙裙完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545851
求助须知:如何正确求助?哪些是违规求助? 4631846
关于积分的说明 14622939
捐赠科研通 4573564
什么是DOI,文献DOI怎么找? 2507609
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455594