Abstract 7395: Histology-based prognosis prediction using deep learning outperforms and is independent of the MGMT methylation status in patients with glioblastoma

胶质母细胞瘤 肿瘤科 医学 组织学 甲基化 内科学 深度学习 人工智能 癌症研究 计算机科学 生物 基因 遗传学
作者
Lucas Fidon,Claire Thiriez,Alexandre Grimaldi,Omar Darwiche Domingues,Charles Maussion,Caroline Hoffmann
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 7395-7395
标识
DOI:10.1158/1538-7445.am2024-7395
摘要

Abstract Introduction: MGMT gene promoter methylation status is today the only biomarker of survival for GBM patients and predicts favorable response to temozolomide (TMZ). Here we propose a deep learning-based model using histology data (H&E slides) to predict the prognosis of patients with Glioblastoma (GBM) treated by standard of care (SOC). Methods: We included TCGA GBM patients and selected only patients treated after 2005 (Stupp protocol start); compliant to WHO 2021 classification; treated by surgery and adjuvant therapy; with a follow-up superior to median overall survival (OS) (14.5 months). Short and long survivor labels were defined based on median OS cut-off. A deep learning pipeline was trained to predict these labels from the H&E slides (baseline surgery samples). First, the slides were automatically segmented into tissue and background, divided into a regular grid of tiles (112 × 112µm), and tiles were vectorized using a vision transformer-based feature extractor trained on H&E slides of 5,500 patients with 16 cancer subtypes (GBM excluded). In the second step, ABMIL deep learning model was trained to predict the survival category using the bag of tile features available from step 1 for each patient. The cohort was divided into five folds with even numbers of short and long survivors. For each fold, 50 ABMIL models were trained on the remaining folds and ensembled to predict the category of the patients in the fold. Training hyperparameters were tuned on a separated cohort excluding GBM patients. Results: After filtering, we analyzed n = 192 TCGA GBM patients including 154 patients with a known MGMT promoter methylation status. Our histology-based model had an accuracy of 0.661 and a ROC AUC of 0.706. It stratified the population into short and long survivors with an Hazard Ratio (HR) of 0.48 (95% CI 0.34-0.69). Our model outperformed the MGMT methylation status that had an HR of 0.57 (95% CI 0.40-0.83). Moreover, our model was independent of MGMT methylation status and the combination of both was able to further improve prognosis prediction: we applied our model independently to the 91 patients with an unmethylated MGMT status (predicted: 43 low, 48 high) and to the 63 patients with a methylated MGMT status (predicted: 30 low, 33 high), and obtained HR of 0.42 (95% CI 0.27-0.67) and 0.49 (95% CI 0.28-0.86) respectively. Conclusion: Having selected patients treated by the latest SOC and classified as GBM by the latest WHO criteria, we propose a model predicting survival based on histological specimens available in routine care, which outperformed the current unique biomarker MGMT methylation status. The combination of this status and our model improves prognosis predictions compared to each strategy alone. Citation Format: Lucas Fidon, Celine Thiriez, Alexandre Grimaldi, Omar Darwiche Domingues, Charles Maussion, Caroline Hoffmann. Histology-based prognosis prediction using deep learning outperforms and is independent of the MGMT methylation status in patients with glioblastoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 7395.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
迅速曼冬发布了新的文献求助10
1秒前
1秒前
1秒前
wwwwww完成签到,获得积分20
1秒前
tsttst完成签到,获得积分10
2秒前
2秒前
能干思远发布了新的文献求助10
3秒前
4秒前
wwwwww发布了新的文献求助10
5秒前
1337发布了新的文献求助30
5秒前
5秒前
ltz发布了新的文献求助30
6秒前
惔愠发布了新的文献求助50
6秒前
6秒前
洁净的锦程完成签到 ,获得积分10
7秒前
7秒前
科研通AI5应助晨风韵雨采纳,获得10
8秒前
酷波er应助xiaofenzi采纳,获得10
8秒前
9秒前
11秒前
大观天下发布了新的文献求助10
11秒前
12秒前
科研通AI5应助xiaosu de baobao采纳,获得30
12秒前
13秒前
4444小熊完成签到 ,获得积分10
14秒前
深情安青应助zdy采纳,获得10
14秒前
15秒前
16秒前
彭于晏应助wwwwww采纳,获得10
16秒前
NexusExplorer应助熊啊熊采纳,获得10
16秒前
张楠完成签到 ,获得积分10
17秒前
勤劳悒完成签到,获得积分10
17秒前
zhangxr发布了新的文献求助10
18秒前
乐的绿色斑马完成签到 ,获得积分20
19秒前
小沈小沈完成签到,获得积分10
19秒前
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732209
求助须知:如何正确求助?哪些是违规求助? 3276530
关于积分的说明 9997530
捐赠科研通 2992039
什么是DOI,文献DOI怎么找? 1641986
邀请新用户注册赠送积分活动 780144
科研通“疑难数据库(出版商)”最低求助积分说明 748701