亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing precision medicine: a nomogram for predicting platinum resistance in epithelial ovarian cancer

列线图 医学 接收机工作特性 逻辑回归 肿瘤科 卵巢癌 内科学 曲线下面积 癌症
作者
Ruyue Li,Zhuo Xiong,Yuan Ma,Yongmei Li,Yue Yang,Shaohan Ma,Chunfang Ha
出处
期刊:World Journal of Surgical Oncology [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12957-024-03359-9
摘要

Abstract Background This study aimed to develop a novel nomogram that can accurately estimate platinum resistance to enhance precision medicine in epithelial ovarian cancer(EOC). Methods EOC patients who received primary therapy at the General Hospital of Ningxia Medical University between January 31, 2019, and June 30, 2021 were included. The LASSO analysis was utilized to screen the variables which contained clinical features and platinum-resistance gene immunohistochemistry scores. A nomogram was created after the logistic regression analysis to develop the prediction model. The consistency index (C-index), calibration curve, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) were used to assess the nomogram’s performance. Results The logistic regression analysis created a prediction model based on 11 factors filtered down by LASSO regression. As predictors, the immunohistochemical scores of CXLC1, CXCL2, IL6, ABCC1, LRP, BCL2, vascular tumor thrombus, ascites cancer cells, maximum tumor diameter, neoadjuvant chemotherapy, and HE4 were employed. The C-index of the nomogram was found to be 0.975. The nomogram’s specificity is 95.35% and its sensitivity, with a cut-off value of 165.6, is 92.59%, as seen by the ROC curve. After the nomogram was externally validated in the test cohort, the coincidence rate was determined to be 84%, and the ROC curve indicated that the nomogram’s AUC was 0.949. Conclusion A nomogram containing clinical characteristics and platinum gene IHC scores was developed and validated to predict the risk of EOC platinum resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
3秒前
cyf完成签到,获得积分10
4秒前
12秒前
VuuVuu发布了新的文献求助10
17秒前
李爱国应助VuuVuu采纳,获得10
24秒前
25秒前
34秒前
风音发布了新的文献求助10
41秒前
俏皮的安萱完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Xiaoxiao应助科研通管家采纳,获得10
1分钟前
wendy发布了新的文献求助10
1分钟前
T-SL完成签到,获得积分10
1分钟前
1分钟前
陶醉羽毛发布了新的文献求助10
1分钟前
科研通AI5应助陶醉羽毛采纳,获得10
2分钟前
2分钟前
cc发布了新的文献求助10
2分钟前
幽默赛君完成签到 ,获得积分10
2分钟前
zr完成签到 ,获得积分10
2分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
韩韩完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
子平完成签到 ,获得积分10
4分钟前
Weiyu完成签到 ,获得积分10
4分钟前
Alk完成签到,获得积分10
4分钟前
852应助科研通管家采纳,获得10
5分钟前
CodeCraft应助ly采纳,获得10
5分钟前
科研通AI5应助毛不二采纳,获得10
5分钟前
罗是一完成签到,获得积分10
5分钟前
罗是一发布了新的文献求助10
5分钟前
6分钟前
一尾鱼完成签到,获得积分10
6分钟前
毛不二发布了新的文献求助10
6分钟前
简单双组完成签到,获得积分10
6分钟前
酷波er应助Niki采纳,获得30
6分钟前
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555736
求助须知:如何正确求助?哪些是违规求助? 3131355
关于积分的说明 9390838
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803