Sarcopenic obesity in free-living older adults detected by the ESPEN-EASO consensus diagnostic algorithm: Validation in an Italian cohort and predictive value of insulin resistance and altered plasma ghrelin profile

肌萎缩 生长素 医学 队列 胰岛素抵抗 肌萎缩性肥胖 肥胖 内科学 代谢综合征 老年学 内分泌学 激素
作者
Gianluca Gortan Cappellari,A. Semolic,Michela Zanetti,Pierandrea Vinci,M. Ius,Gianfranco Guarnieri,Luca Busetto,Lorenzo Maria Donini,Rocco Barazzoni
出处
期刊:Metabolism-clinical and Experimental [Elsevier]
卷期号:145: 155595-155595 被引量:8
标识
DOI:10.1016/j.metabol.2023.155595
摘要

Aging and obesity are synergistic sarcopenia risk factors (RF). Their association in sarcopenic obesity (SO) enhances morbidity and mortality, but consensus on SO diagnostic criteria is limited. ESPEN and EASO issued a consensus algorithm for SO screening (obesity and clinical SO suspicion) and diagnosis [low muscle strength by hand-grip (HGS) and low muscle mass by BIA], and we investigated its implementation in older adults (>65-years), as well as SO-associated metabolic RF [insulin resistance (IR: HOMA) and plasma acylated (AG) and unacylated (UnAG) ghrelin, with predictive value also assessed from 5-year-prior observations]. Older adults with obesity from the Italian MoMa study on metabolic syndrome in primary care (n = 76) were studied. 7 of 61 individuals with positive screening had SO (SO+; 9 % of cohort). No individuals with negative screening had SO. SO+ had higher IR, AG and plasma AG/UnAG ratio (p < 0.05 vs negative screening and SO-), and both IR and ghrelin profile predicted 5-year SO risk independent of age, sex and BMI. The current results provide the first ESPEN-EASO algorithm-based investigation of SO in free-living older adults, with 9 % prevalence in those with obesity and 100 % algorithm sensitivity, and they support IR and plasma ghrelin profile as SO risk factors in this setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理宛秋完成签到 ,获得积分10
2秒前
香蕉觅云应助yyq617569158采纳,获得10
2秒前
3秒前
酷波er应助二条采纳,获得10
3秒前
VERY发布了新的文献求助10
4秒前
adoretheall发布了新的文献求助10
5秒前
毛毛虫发布了新的文献求助10
6秒前
6秒前
在水一方应助我的学习采纳,获得10
7秒前
thchiang发布了新的文献求助10
8秒前
9秒前
慕青应助zhouzhaoyi采纳,获得10
9秒前
11秒前
杨金城发布了新的文献求助10
11秒前
12秒前
勤奋的凌翠完成签到 ,获得积分10
12秒前
12秒前
sanmu完成签到,获得积分20
12秒前
冷静荠关注了科研通微信公众号
12秒前
14秒前
14秒前
15秒前
15秒前
毛毛虫完成签到,获得积分10
16秒前
16秒前
Lobectomy发布了新的文献求助10
17秒前
Richard发布了新的文献求助10
17秒前
LabRat完成签到 ,获得积分10
17秒前
Spectrum_07完成签到,获得积分10
18秒前
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
从容芮应助科研通管家采纳,获得10
18秒前
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
19秒前
从容芮应助科研通管家采纳,获得50
19秒前
所所应助科研通管家采纳,获得10
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943