亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

POS0891 AUTOMATIC COMPUTATION OF KNEE OSTEOARTHRITIS SEVERITY USING KNEE X-RAYS AND CONVOLUTIONAL NEURAL NETWORKS

骨关节炎 医学 卷积神经网络 射线照相术 膝关节 人工智能 股骨 关节置换术 计算机科学 物理疗法 物理医学与康复 关节置换术 放射科 病理 外科 替代医学
作者
T. Aït Si Selmi,Florian Müller-Fouarge,Théo Estienne,S. Bekadar,Yannick Carrillon,C. Pouchy,M. Bonnin
标识
DOI:10.1136/annrheumdis-2023-eular.2349
摘要

Background

Knee osteoarthritis is a heterogeneous and complex degenerative pathology, characterized by a progressive deterioration of bone cartilage and structural modifications of the joint [1]. The precision of the diagnosis and the rating of the severity are major criteria for the therapeutic management and its follow-up. They are based on three criteria: the assessment of the pain, of the functional impairment and of the structural modifications. For this last criterion, the standard protocol in routine care remains the interpretation of X-ray images using standardized scales. The Kellgren-Lawrence (KL) score, which assesses both the joint space and the presence of osteophytes, allows a classification of the stages of osteoarthritis, but it relies on subjective manual interpretation and is time consuming for practitioners [2].

Objectives

In this study, we have developed artificial intelligence algorithms to automatically measure the tibia-femur joint spacing (or joint space width JSW) and determine the Kellgren-Lawrence (KL) score.

Methods

We constituted a retrospective cohort of 19,560 patients. Using all their images, we trained different neural networks in order to select just knee AP X-rays without prosthesis nor artifacts. Our work explores two approaches: the prediction of the stage of osteoarthritis according to the KL scale and the measurement of the JSW. For the prediction of the KL score, 2,081 X-rays annotated by 3 radiologists were used to train a convolutional neural network (CNN). The measurement of the JSW required the realization of 3 different annotations: the positioning of the joint, of the two condyles (medial and lateral) and the contouring of tibia and femur. Three neural networks were optimized to reproduce these annotations before calculating the JSW for each condyle. For each individual task, we decomposed the datasets into training, validation, and test sets, used different data augmentation techniques, and researched the best possible architecture.

Results

The Kellgren-Lawrence score prediction obtained the following performances: an accuracy of 0.92, a sensitivity of 0.84 and an average area under the ROC curve (AuC) of 0.97. To evaluate the measurement of the JSW, we calculated the correlation between the area measured by the annotators and the area predicted by the algorithms, obtaining a Pearson correlation of 0.84.

Conclusion

This study highlights the relevance of the use of artificial neural networks for the assessment of osteoarthritis. Their performance opens the way to a tool assisting in the precise and standardized gradation of the severity of joint degradation.

References

[1]Lawrence, J. S., Bremner, J. M., & Bier, F. (1966). Osteo-arthrosis. Prevalence in the population and relationship between symptoms and x-ray changes. Annals of the rheumatic diseases, 25(1), 1. [2]Kellgren, J. H., & Lawrence, J. (1957). Radiological assessment of osteo-arthrosis. Annals of the rheumatic diseases, 16(4), 494.

Acknowledgements:

NIL.

Disclosure of Interests

None Declared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Tiam发布了新的文献求助10
7秒前
科研通AI5应助欣喜花生采纳,获得10
19秒前
24秒前
Dean发布了新的文献求助10
28秒前
童俊江发布了新的文献求助10
1分钟前
完美世界应助宝贝采纳,获得10
1分钟前
1分钟前
宝贝发布了新的文献求助10
1分钟前
1分钟前
欣喜花生发布了新的文献求助10
1分钟前
李联洪发布了新的文献求助10
2分钟前
bkagyin应助童俊江采纳,获得10
2分钟前
时否十七完成签到,获得积分10
2分钟前
zch19970203完成签到,获得积分10
2分钟前
2分钟前
Suraim完成签到,获得积分10
2分钟前
童俊江发布了新的文献求助10
2分钟前
开心汉堡完成签到 ,获得积分10
3分钟前
FashionBoy应助甜美冥茗采纳,获得10
3分钟前
3分钟前
甜美冥茗发布了新的文献求助10
3分钟前
完美世界应助eth采纳,获得10
3分钟前
3分钟前
花海完成签到,获得积分20
3分钟前
3分钟前
花海发布了新的文献求助10
3分钟前
怕孤独的白凡完成签到 ,获得积分10
3分钟前
eth发布了新的文献求助10
3分钟前
甜美冥茗完成签到,获得积分10
4分钟前
华仔应助童俊江采纳,获得10
4分钟前
bxsu发布了新的文献求助10
4分钟前
4分钟前
童俊江发布了新的文献求助10
4分钟前
Ashao完成签到 ,获得积分10
4分钟前
4分钟前
zhuzhu026发布了新的文献求助10
4分钟前
乐乐应助科研通管家采纳,获得10
4分钟前
乐乐应助zhuzhu026采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581969
求助须知:如何正确求助?哪些是违规求助? 3999763
关于积分的说明 12381697
捐赠科研通 3674582
什么是DOI,文献DOI怎么找? 2025216
邀请新用户注册赠送积分活动 1058980
科研通“疑难数据库(出版商)”最低求助积分说明 945674