亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

POS0891 AUTOMATIC COMPUTATION OF KNEE OSTEOARTHRITIS SEVERITY USING KNEE X-RAYS AND CONVOLUTIONAL NEURAL NETWORKS

骨关节炎 医学 卷积神经网络 射线照相术 膝关节 人工智能 股骨 关节置换术 计算机科学 物理疗法 物理医学与康复 关节置换术 放射科 病理 外科 替代医学
作者
T. Aït Si Selmi,Florian Müller-Fouarge,Théo Estienne,S. Bekadar,Yannick Carrillon,C. Pouchy,M. Bonnin
标识
DOI:10.1136/annrheumdis-2023-eular.2349
摘要

Background

Knee osteoarthritis is a heterogeneous and complex degenerative pathology, characterized by a progressive deterioration of bone cartilage and structural modifications of the joint [1]. The precision of the diagnosis and the rating of the severity are major criteria for the therapeutic management and its follow-up. They are based on three criteria: the assessment of the pain, of the functional impairment and of the structural modifications. For this last criterion, the standard protocol in routine care remains the interpretation of X-ray images using standardized scales. The Kellgren-Lawrence (KL) score, which assesses both the joint space and the presence of osteophytes, allows a classification of the stages of osteoarthritis, but it relies on subjective manual interpretation and is time consuming for practitioners [2].

Objectives

In this study, we have developed artificial intelligence algorithms to automatically measure the tibia-femur joint spacing (or joint space width JSW) and determine the Kellgren-Lawrence (KL) score.

Methods

We constituted a retrospective cohort of 19,560 patients. Using all their images, we trained different neural networks in order to select just knee AP X-rays without prosthesis nor artifacts. Our work explores two approaches: the prediction of the stage of osteoarthritis according to the KL scale and the measurement of the JSW. For the prediction of the KL score, 2,081 X-rays annotated by 3 radiologists were used to train a convolutional neural network (CNN). The measurement of the JSW required the realization of 3 different annotations: the positioning of the joint, of the two condyles (medial and lateral) and the contouring of tibia and femur. Three neural networks were optimized to reproduce these annotations before calculating the JSW for each condyle. For each individual task, we decomposed the datasets into training, validation, and test sets, used different data augmentation techniques, and researched the best possible architecture.

Results

The Kellgren-Lawrence score prediction obtained the following performances: an accuracy of 0.92, a sensitivity of 0.84 and an average area under the ROC curve (AuC) of 0.97. To evaluate the measurement of the JSW, we calculated the correlation between the area measured by the annotators and the area predicted by the algorithms, obtaining a Pearson correlation of 0.84.

Conclusion

This study highlights the relevance of the use of artificial neural networks for the assessment of osteoarthritis. Their performance opens the way to a tool assisting in the precise and standardized gradation of the severity of joint degradation.

References

[1]Lawrence, J. S., Bremner, J. M., & Bier, F. (1966). Osteo-arthrosis. Prevalence in the population and relationship between symptoms and x-ray changes. Annals of the rheumatic diseases, 25(1), 1. [2]Kellgren, J. H., & Lawrence, J. (1957). Radiological assessment of osteo-arthrosis. Annals of the rheumatic diseases, 16(4), 494.

Acknowledgements:

NIL.

Disclosure of Interests

None Declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
41秒前
jasonwee发布了新的文献求助10
44秒前
55秒前
55秒前
Jasper应助单薄水星采纳,获得10
59秒前
1分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
Gryff完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
zxcvvbb1001完成签到 ,获得积分10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
Shandongdaxiu完成签到 ,获得积分10
4分钟前
Owen应助安贝的呐喊采纳,获得10
4分钟前
PHD满完成签到,获得积分10
4分钟前
4分钟前
5分钟前
jyy发布了新的文献求助200
5分钟前
Li发布了新的文献求助10
5分钟前
5分钟前
5分钟前
wynne313完成签到 ,获得积分10
5分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
单薄水星发布了新的文献求助10
6分钟前
单薄水星完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549249
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634876
捐赠科研通 4576049
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456512