亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

POS0891 AUTOMATIC COMPUTATION OF KNEE OSTEOARTHRITIS SEVERITY USING KNEE X-RAYS AND CONVOLUTIONAL NEURAL NETWORKS

骨关节炎 医学 卷积神经网络 射线照相术 膝关节 人工智能 股骨 关节置换术 计算机科学 物理疗法 物理医学与康复 关节置换术 放射科 病理 外科 替代医学
作者
T. Aït Si Selmi,Florian Müller-Fouarge,Théo Estienne,S. Bekadar,Yannick Carrillon,C. Pouchy,M. Bonnin
标识
DOI:10.1136/annrheumdis-2023-eular.2349
摘要

Background

Knee osteoarthritis is a heterogeneous and complex degenerative pathology, characterized by a progressive deterioration of bone cartilage and structural modifications of the joint [1]. The precision of the diagnosis and the rating of the severity are major criteria for the therapeutic management and its follow-up. They are based on three criteria: the assessment of the pain, of the functional impairment and of the structural modifications. For this last criterion, the standard protocol in routine care remains the interpretation of X-ray images using standardized scales. The Kellgren-Lawrence (KL) score, which assesses both the joint space and the presence of osteophytes, allows a classification of the stages of osteoarthritis, but it relies on subjective manual interpretation and is time consuming for practitioners [2].

Objectives

In this study, we have developed artificial intelligence algorithms to automatically measure the tibia-femur joint spacing (or joint space width JSW) and determine the Kellgren-Lawrence (KL) score.

Methods

We constituted a retrospective cohort of 19,560 patients. Using all their images, we trained different neural networks in order to select just knee AP X-rays without prosthesis nor artifacts. Our work explores two approaches: the prediction of the stage of osteoarthritis according to the KL scale and the measurement of the JSW. For the prediction of the KL score, 2,081 X-rays annotated by 3 radiologists were used to train a convolutional neural network (CNN). The measurement of the JSW required the realization of 3 different annotations: the positioning of the joint, of the two condyles (medial and lateral) and the contouring of tibia and femur. Three neural networks were optimized to reproduce these annotations before calculating the JSW for each condyle. For each individual task, we decomposed the datasets into training, validation, and test sets, used different data augmentation techniques, and researched the best possible architecture.

Results

The Kellgren-Lawrence score prediction obtained the following performances: an accuracy of 0.92, a sensitivity of 0.84 and an average area under the ROC curve (AuC) of 0.97. To evaluate the measurement of the JSW, we calculated the correlation between the area measured by the annotators and the area predicted by the algorithms, obtaining a Pearson correlation of 0.84.

Conclusion

This study highlights the relevance of the use of artificial neural networks for the assessment of osteoarthritis. Their performance opens the way to a tool assisting in the precise and standardized gradation of the severity of joint degradation.

References

[1]Lawrence, J. S., Bremner, J. M., & Bier, F. (1966). Osteo-arthrosis. Prevalence in the population and relationship between symptoms and x-ray changes. Annals of the rheumatic diseases, 25(1), 1. [2]Kellgren, J. H., & Lawrence, J. (1957). Radiological assessment of osteo-arthrosis. Annals of the rheumatic diseases, 16(4), 494.

Acknowledgements:

NIL.

Disclosure of Interests

None Declared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
连烙完成签到,获得积分20
5秒前
5秒前
6秒前
9秒前
15秒前
ShengQ完成签到,获得积分10
17秒前
19秒前
zai完成签到,获得积分20
20秒前
zai完成签到,获得积分10
29秒前
Lucas应助KYT采纳,获得10
30秒前
31秒前
32秒前
shifeng_zai完成签到,获得积分20
39秒前
zai完成签到,获得积分20
48秒前
丰富寒风发布了新的文献求助10
48秒前
51秒前
丰富寒风发布了新的文献求助30
1分钟前
1分钟前
Esperanza完成签到,获得积分10
1分钟前
1分钟前
青北挽素发布了新的文献求助10
1分钟前
西北发布了新的文献求助10
1分钟前
1分钟前
kokocrl完成签到,获得积分10
1分钟前
1分钟前
小二郎应助西北采纳,获得10
1分钟前
科研发布了新的文献求助20
1分钟前
丰富寒风完成签到,获得积分10
1分钟前
今后应助轻松念蕾采纳,获得10
1分钟前
丰富寒风发布了新的文献求助10
1分钟前
科研完成签到,获得积分20
1分钟前
1分钟前
丰知然应助嘻哈hang采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455618
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022880
捐赠科研通 2739402
什么是DOI,文献DOI怎么找? 1502747
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387