POS0891 AUTOMATIC COMPUTATION OF KNEE OSTEOARTHRITIS SEVERITY USING KNEE X-RAYS AND CONVOLUTIONAL NEURAL NETWORKS

骨关节炎 医学 卷积神经网络 射线照相术 膝关节 人工智能 股骨 关节置换术 计算机科学 物理疗法 物理医学与康复 关节置换术 放射科 病理 外科 替代医学
作者
T. Aït Si Selmi,Florian Müller-Fouarge,Théo Estienne,S. Bekadar,Yannick Carrillon,C. Pouchy,M. Bonnin
标识
DOI:10.1136/annrheumdis-2023-eular.2349
摘要

Background

Knee osteoarthritis is a heterogeneous and complex degenerative pathology, characterized by a progressive deterioration of bone cartilage and structural modifications of the joint [1]. The precision of the diagnosis and the rating of the severity are major criteria for the therapeutic management and its follow-up. They are based on three criteria: the assessment of the pain, of the functional impairment and of the structural modifications. For this last criterion, the standard protocol in routine care remains the interpretation of X-ray images using standardized scales. The Kellgren-Lawrence (KL) score, which assesses both the joint space and the presence of osteophytes, allows a classification of the stages of osteoarthritis, but it relies on subjective manual interpretation and is time consuming for practitioners [2].

Objectives

In this study, we have developed artificial intelligence algorithms to automatically measure the tibia-femur joint spacing (or joint space width JSW) and determine the Kellgren-Lawrence (KL) score.

Methods

We constituted a retrospective cohort of 19,560 patients. Using all their images, we trained different neural networks in order to select just knee AP X-rays without prosthesis nor artifacts. Our work explores two approaches: the prediction of the stage of osteoarthritis according to the KL scale and the measurement of the JSW. For the prediction of the KL score, 2,081 X-rays annotated by 3 radiologists were used to train a convolutional neural network (CNN). The measurement of the JSW required the realization of 3 different annotations: the positioning of the joint, of the two condyles (medial and lateral) and the contouring of tibia and femur. Three neural networks were optimized to reproduce these annotations before calculating the JSW for each condyle. For each individual task, we decomposed the datasets into training, validation, and test sets, used different data augmentation techniques, and researched the best possible architecture.

Results

The Kellgren-Lawrence score prediction obtained the following performances: an accuracy of 0.92, a sensitivity of 0.84 and an average area under the ROC curve (AuC) of 0.97. To evaluate the measurement of the JSW, we calculated the correlation between the area measured by the annotators and the area predicted by the algorithms, obtaining a Pearson correlation of 0.84.

Conclusion

This study highlights the relevance of the use of artificial neural networks for the assessment of osteoarthritis. Their performance opens the way to a tool assisting in the precise and standardized gradation of the severity of joint degradation.

References

[1]Lawrence, J. S., Bremner, J. M., & Bier, F. (1966). Osteo-arthrosis. Prevalence in the population and relationship between symptoms and x-ray changes. Annals of the rheumatic diseases, 25(1), 1. [2]Kellgren, J. H., & Lawrence, J. (1957). Radiological assessment of osteo-arthrosis. Annals of the rheumatic diseases, 16(4), 494.

Acknowledgements:

NIL.

Disclosure of Interests

None Declared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈锦完成签到,获得积分10
1秒前
wangwangwang完成签到,获得积分10
1秒前
2秒前
坚定的赛凤完成签到,获得积分10
2秒前
蟑螂恶霸完成签到,获得积分10
3秒前
章鱼gie完成签到,获得积分10
4秒前
Xenia发布了新的文献求助10
4秒前
木心发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助KerwinLLL采纳,获得10
6秒前
松鼠鳜鱼完成签到,获得积分10
7秒前
CodeCraft应助王晨旭采纳,获得10
7秒前
大力云朵完成签到,获得积分10
7秒前
Silence完成签到,获得积分0
8秒前
神勇若雁完成签到,获得积分10
8秒前
木木发布了新的文献求助10
8秒前
9秒前
乐乐应助不争馒头争口气采纳,获得10
9秒前
9秒前
CipherSage应助hjx采纳,获得30
11秒前
ww完成签到,获得积分10
12秒前
星辰大海应助Ventus采纳,获得10
13秒前
Genius发布了新的文献求助10
15秒前
好吃完成签到,获得积分20
15秒前
kitty发布了新的文献求助10
16秒前
吡嗪发布了新的文献求助10
16秒前
科研通AI2S应助hkh采纳,获得10
17秒前
yuli应助hkh采纳,获得10
17秒前
浮游应助hkh采纳,获得10
17秒前
浮游应助hkh采纳,获得10
17秒前
Zx_1993应助hkh采纳,获得10
17秒前
浮游应助hkh采纳,获得10
17秒前
科研通AI2S应助hkh采纳,获得10
17秒前
浮游应助hkh采纳,获得10
17秒前
浮游应助hkh采纳,获得10
17秒前
手抓饼啊发布了新的文献求助10
17秒前
浮游应助hkh采纳,获得10
17秒前
18秒前
隐形曼青应助木木采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419734
求助须知:如何正确求助?哪些是违规求助? 4535018
关于积分的说明 14147731
捐赠科研通 4451737
什么是DOI,文献DOI怎么找? 2441853
邀请新用户注册赠送积分活动 1433423
关于科研通互助平台的介绍 1410663