已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UAV remote sensing image stitching via improved VGG16 Siamese feature extraction network

图像拼接 计算机科学 仿射变换 人工智能 兰萨克 特征(语言学) 单应性 计算机视觉 特征提取 尺度不变特征变换 转化(遗传学) 航空影像 相似性(几何) 匹配(统计) 模式识别(心理学) 遥感 图像(数学) 数学 统计 基因 地质学 哲学 射影空间 投射试验 化学 纯数学 生物化学 语言学
作者
Fuzhen Zhu,Jiacheng Li,Bing Zhu,Huiling Li,Guoxin Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:229: 120525-120525 被引量:35
标识
DOI:10.1016/j.eswa.2023.120525
摘要

UAV remote sensing image stitching can provide a more comprehensive and continuous area by stitching several overlapping region images. It has been widely used in many fields, such as airborne reconnaissance and surveillance tasks, agriculture production, geological disaster monitoring, and so on. However, traditional feature-based image stitching methods often require hand-crafted features and multiple execution steps, which could extract many redundant feature points in non-overlapping regions and may fail to stitch images with weak textures. To solve this problem, we propose an improved VGG16 Siamese network for the UAV remote sensing image stitching model to achieve end-to-end stitching. The first 13 layers of the VGG16 network were intercepted to form a shared weights feature extraction network, and an improved Squeeze-and-Excitation module was introduced to effectively extract the features of the overlapping areas of the images. A network of regressing affine matrix was designed by using the LeakyReLu activation function to protect the relevant feature maps after feature fine matching, which improves the accuracy of image stitching. Besides, we constructed datasets to train our network: a single UAV remote sensing image was used to form a training image pair based on a limited degree of affine transformation, and the real label of affine transformation between the image pairs was obtained. We compared the SIFT + RANSAC, APAP, and deep homography estimation-based image stitching algorithm on the UAV remote sensing datasets. Experiments show the value of structural similarity(SSIM) increased by 24.1%, and the root mean square error(RMSE) was reduced by 14.69%. Moreover, the proposed stitching model also has good stitching results for UAV remote sensing images as well as weak texture images in subjective visual effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到 ,获得积分10
刚刚
于鱼发布了新的文献求助10
2秒前
着急的青枫应助axis采纳,获得10
2秒前
shy发布了新的文献求助10
4秒前
5秒前
彭于晏应助上官采纳,获得10
6秒前
楚慈楚发布了新的文献求助10
6秒前
CipherSage应助尚尚采纳,获得10
8秒前
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得30
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
11秒前
无极微光应助Jun采纳,获得20
11秒前
共享精神应助Walden采纳,获得10
12秒前
戚琪祁完成签到,获得积分10
14秒前
16秒前
酷波er应助Jesper采纳,获得10
18秒前
18秒前
高高冰旋完成签到,获得积分10
18秒前
20秒前
yyc完成签到,获得积分10
20秒前
ceeeeeeeeeeee完成签到,获得积分10
21秒前
舒服的鱼完成签到,获得积分10
21秒前
网络复杂完成签到,获得积分20
22秒前
番茄炒蛋发布了新的文献求助10
22秒前
22秒前
ilovelr关注了科研通微信公众号
23秒前
yhjjj完成签到,获得积分20
23秒前
23秒前
高高冰旋发布了新的文献求助10
23秒前
神龙尊者完成签到,获得积分20
24秒前
科研通AI6应助寇博翔采纳,获得10
25秒前
李健应助momo采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558