UAV remote sensing image stitching via improved VGG16 Siamese feature extraction network

图像拼接 计算机科学 仿射变换 人工智能 兰萨克 特征(语言学) 单应性 计算机视觉 特征提取 尺度不变特征变换 转化(遗传学) 航空影像 相似性(几何) 匹配(统计) 模式识别(心理学) 遥感 图像(数学) 数学 统计 基因 地质学 哲学 射影空间 投射试验 化学 纯数学 生物化学 语言学
作者
Fuzhen Zhu,Jiacheng Li,Bing Zhu,Huiling Li,Guoxin Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:229: 120525-120525 被引量:35
标识
DOI:10.1016/j.eswa.2023.120525
摘要

UAV remote sensing image stitching can provide a more comprehensive and continuous area by stitching several overlapping region images. It has been widely used in many fields, such as airborne reconnaissance and surveillance tasks, agriculture production, geological disaster monitoring, and so on. However, traditional feature-based image stitching methods often require hand-crafted features and multiple execution steps, which could extract many redundant feature points in non-overlapping regions and may fail to stitch images with weak textures. To solve this problem, we propose an improved VGG16 Siamese network for the UAV remote sensing image stitching model to achieve end-to-end stitching. The first 13 layers of the VGG16 network were intercepted to form a shared weights feature extraction network, and an improved Squeeze-and-Excitation module was introduced to effectively extract the features of the overlapping areas of the images. A network of regressing affine matrix was designed by using the LeakyReLu activation function to protect the relevant feature maps after feature fine matching, which improves the accuracy of image stitching. Besides, we constructed datasets to train our network: a single UAV remote sensing image was used to form a training image pair based on a limited degree of affine transformation, and the real label of affine transformation between the image pairs was obtained. We compared the SIFT + RANSAC, APAP, and deep homography estimation-based image stitching algorithm on the UAV remote sensing datasets. Experiments show the value of structural similarity(SSIM) increased by 24.1%, and the root mean square error(RMSE) was reduced by 14.69%. Moreover, the proposed stitching model also has good stitching results for UAV remote sensing images as well as weak texture images in subjective visual effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thchiang发布了新的文献求助10
2秒前
迅速千愁完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Nana完成签到 ,获得积分10
8秒前
genius完成签到 ,获得积分10
17秒前
17秒前
thchiang完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
24秒前
Aixia完成签到 ,获得积分10
25秒前
32秒前
小叶子完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
39秒前
ChatGPT完成签到,获得积分10
40秒前
44秒前
量子星尘发布了新的文献求助10
57秒前
安详映阳完成签到 ,获得积分10
58秒前
张昌炜完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
饱满语风完成签到 ,获得积分10
1分钟前
背后的雪巧完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
long0809完成签到,获得积分10
1分钟前
干净思远完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
luobote完成签到 ,获得积分10
1分钟前
alex12259完成签到 ,获得积分10
1分钟前
Antibody完成签到 ,获得积分10
1分钟前
明朗完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
2分钟前
羊羊羊完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
chengxue完成签到,获得积分10
2分钟前
2分钟前
搜集达人应助迅速冬瓜采纳,获得10
2分钟前
kanong完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418544
求助须知:如何正确求助?哪些是违规求助? 4534237
关于积分的说明 14143298
捐赠科研通 4450452
什么是DOI,文献DOI怎么找? 2441265
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410399