UAV remote sensing image stitching via improved VGG16 Siamese feature extraction network

图像拼接 计算机科学 仿射变换 人工智能 兰萨克 特征(语言学) 单应性 计算机视觉 特征提取 尺度不变特征变换 转化(遗传学) 航空影像 相似性(几何) 匹配(统计) 模式识别(心理学) 遥感 图像(数学) 数学 统计 基因 地质学 哲学 射影空间 投射试验 化学 纯数学 生物化学 语言学
作者
Fuzhen Zhu,Jiacheng Li,Bing Zhu,Huiling Li,Guoxin Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:229: 120525-120525 被引量:37
标识
DOI:10.1016/j.eswa.2023.120525
摘要

UAV remote sensing image stitching can provide a more comprehensive and continuous area by stitching several overlapping region images. It has been widely used in many fields, such as airborne reconnaissance and surveillance tasks, agriculture production, geological disaster monitoring, and so on. However, traditional feature-based image stitching methods often require hand-crafted features and multiple execution steps, which could extract many redundant feature points in non-overlapping regions and may fail to stitch images with weak textures. To solve this problem, we propose an improved VGG16 Siamese network for the UAV remote sensing image stitching model to achieve end-to-end stitching. The first 13 layers of the VGG16 network were intercepted to form a shared weights feature extraction network, and an improved Squeeze-and-Excitation module was introduced to effectively extract the features of the overlapping areas of the images. A network of regressing affine matrix was designed by using the LeakyReLu activation function to protect the relevant feature maps after feature fine matching, which improves the accuracy of image stitching. Besides, we constructed datasets to train our network: a single UAV remote sensing image was used to form a training image pair based on a limited degree of affine transformation, and the real label of affine transformation between the image pairs was obtained. We compared the SIFT + RANSAC, APAP, and deep homography estimation-based image stitching algorithm on the UAV remote sensing datasets. Experiments show the value of structural similarity(SSIM) increased by 24.1%, and the root mean square error(RMSE) was reduced by 14.69%. Moreover, the proposed stitching model also has good stitching results for UAV remote sensing images as well as weak texture images in subjective visual effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求助人员发布了新的文献求助10
刚刚
snotman完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
大个应助687采纳,获得10
刚刚
123完成签到,获得积分10
刚刚
1秒前
lizhaonian完成签到,获得积分10
1秒前
玥越发布了新的文献求助10
1秒前
2秒前
绿色之梦完成签到 ,获得积分10
2秒前
要减肥的以一完成签到 ,获得积分10
2秒前
2秒前
3秒前
Akim应助姜汐采纳,获得10
3秒前
WZ完成签到 ,获得积分10
3秒前
蜘蛛道理完成签到 ,获得积分10
3秒前
DADing完成签到,获得积分10
3秒前
深情安青应助冷静绿旋采纳,获得10
3秒前
机智的瑀完成签到 ,获得积分10
3秒前
孔晓龙发布了新的文献求助10
4秒前
cfer完成签到,获得积分10
4秒前
华仔应助687采纳,获得10
4秒前
hamzhang0426完成签到,获得积分10
4秒前
动听初珍发布了新的文献求助10
4秒前
Summer完成签到,获得积分10
4秒前
5秒前
5秒前
Petrichor完成签到,获得积分10
5秒前
5秒前
qqy完成签到,获得积分10
6秒前
wanci应助zyj采纳,获得100
6秒前
6秒前
咎冷亦完成签到,获得积分10
6秒前
7秒前
xcz完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
摆烂研究牲完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651984
求助须知:如何正确求助?哪些是违规求助? 4786417
关于积分的说明 15057609
捐赠科研通 4810610
什么是DOI,文献DOI怎么找? 2573282
邀请新用户注册赠送积分活动 1529204
关于科研通互助平台的介绍 1488110