UAV remote sensing image stitching via improved VGG16 Siamese feature extraction network

图像拼接 计算机科学 仿射变换 人工智能 兰萨克 特征(语言学) 单应性 计算机视觉 特征提取 尺度不变特征变换 转化(遗传学) 航空影像 相似性(几何) 匹配(统计) 模式识别(心理学) 遥感 图像(数学) 数学 统计 基因 地质学 哲学 射影空间 投射试验 化学 纯数学 生物化学 语言学
作者
Fuzhen Zhu,Jiacheng Li,Bing Zhu,Huiling Li,Guoxin Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:229: 120525-120525 被引量:37
标识
DOI:10.1016/j.eswa.2023.120525
摘要

UAV remote sensing image stitching can provide a more comprehensive and continuous area by stitching several overlapping region images. It has been widely used in many fields, such as airborne reconnaissance and surveillance tasks, agriculture production, geological disaster monitoring, and so on. However, traditional feature-based image stitching methods often require hand-crafted features and multiple execution steps, which could extract many redundant feature points in non-overlapping regions and may fail to stitch images with weak textures. To solve this problem, we propose an improved VGG16 Siamese network for the UAV remote sensing image stitching model to achieve end-to-end stitching. The first 13 layers of the VGG16 network were intercepted to form a shared weights feature extraction network, and an improved Squeeze-and-Excitation module was introduced to effectively extract the features of the overlapping areas of the images. A network of regressing affine matrix was designed by using the LeakyReLu activation function to protect the relevant feature maps after feature fine matching, which improves the accuracy of image stitching. Besides, we constructed datasets to train our network: a single UAV remote sensing image was used to form a training image pair based on a limited degree of affine transformation, and the real label of affine transformation between the image pairs was obtained. We compared the SIFT + RANSAC, APAP, and deep homography estimation-based image stitching algorithm on the UAV remote sensing datasets. Experiments show the value of structural similarity(SSIM) increased by 24.1%, and the root mean square error(RMSE) was reduced by 14.69%. Moreover, the proposed stitching model also has good stitching results for UAV remote sensing images as well as weak texture images in subjective visual effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcl发布了新的文献求助10
1秒前
1秒前
1秒前
情怀应助唐小颖采纳,获得10
2秒前
赘婿应助啊哦采纳,获得10
2秒前
李健的小迷弟应助zqh采纳,获得10
2秒前
木木川发布了新的文献求助10
2秒前
水博士发布了新的文献求助10
3秒前
研友_VZG7GZ应助糊涂的汽车采纳,获得10
4秒前
一线西风发布了新的文献求助10
4秒前
hanhanhan发布了新的文献求助50
4秒前
AJ发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
kkkhhh发布了新的文献求助10
6秒前
天天快乐应助SEV采纳,获得10
6秒前
悦耳安莲完成签到,获得积分20
6秒前
传奇3应助张123采纳,获得10
6秒前
zgh5615完成签到,获得积分10
6秒前
Taki发布了新的文献求助10
6秒前
星辰大海应助Duxize采纳,获得10
8秒前
8秒前
9秒前
cj发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
13秒前
开心夏旋完成签到,获得积分10
13秒前
嘞是举仔应助专注的草丛采纳,获得20
14秒前
好好好完成签到,获得积分10
14秒前
洁净如音完成签到,获得积分10
14秒前
wheeler1发布了新的文献求助10
14秒前
浮云发布了新的文献求助30
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420