Integrating the traffic science with representation learning for city-wide network congestion prediction

计算机科学 瓶颈 交通拥挤 流量(计算机网络) 数据科学 人工智能 机器学习 数据挖掘 计算机网络 运输工程 工程类 嵌入式系统
作者
Wenqing Zheng,Hao Yang,Jiarui Cai,Peihao Wang,Jin Xuan,Simon S. Du,Yinhai Wang,Zhangyang Wang
出处
期刊:Information Fusion [Elsevier]
卷期号:99: 101837-101837 被引量:5
标识
DOI:10.1016/j.inffus.2023.101837
摘要

Recent studies on traffic congestion prediction have paved a promising path towards the reduction of potential economic and environmental loss. However, at the city-wide scale, current approaches face substantial hurdles, such as being unable to support the multiple sensors modalities, insufficient congestion fluctuation and propagation modeling, and weak generalization to heterogeneous traffic network structures. To address these pitfalls, this paper investigates how to integrate the missing urban science domain priors into a general sequential prediction model, and proposes the customized Traffic-informed Transformer (TinT). To prevent receptive field bias, a novel mixture of long and short range information routing mechanism is proposed with the traffic-informed tokenization. To capture the unbalanced traffic flow propagation, an original anisotropic graph aggregation is developed to differentiate the traffic fluctuation based on orientations. Extensive results demonstrated TinT's outstanding performance over other twelve state-of-the-art models and its broad applicability to multiple data modalities in six well-known cities throughout the world. We released our implementations at: https://github.com/VITA-Group/TinT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsw发布了新的文献求助10
1秒前
11完成签到,获得积分10
1秒前
机灵的波比完成签到,获得积分20
1秒前
2秒前
bkagyin应助小伏采纳,获得10
2秒前
2秒前
3秒前
情怀应助虚拟的乐松采纳,获得10
3秒前
4秒前
4秒前
4秒前
ShawnJohn发布了新的文献求助10
4秒前
5秒前
麻辣香锅完成签到,获得积分10
5秒前
Khalil发布了新的文献求助10
6秒前
正直的文涛完成签到 ,获得积分10
6秒前
liao_duoduo完成签到,获得积分10
6秒前
ily.发布了新的文献求助10
6秒前
科研通AI6应助吴婉秋采纳,获得10
6秒前
7秒前
8秒前
勤恳青亦发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助研友_nEoMy8采纳,获得10
9秒前
9秒前
小飞发布了新的文献求助10
9秒前
浪里小白龙完成签到,获得积分10
10秒前
10秒前
充电宝应助敏感狗采纳,获得10
11秒前
Lllleen完成签到 ,获得积分10
11秒前
11秒前
科研通AI6应助生动的以南采纳,获得10
12秒前
12秒前
Khalil完成签到,获得积分10
12秒前
金咪发布了新的文献求助10
13秒前
今后应助爱吃蔬菜采纳,获得10
13秒前
14秒前
14秒前
jin发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939