Satellite-based drought monitoring using optimal indices for diverse climates and land types

蒸散量 环境科学 均方误差 降水 地形地貌 水循环 卫星 土地覆盖 水文学(农业) 气象学 土地利用 统计 数学 地理 地质学 生态学 地图学 生物 工程类 航空航天工程 岩土工程
作者
Maedeh Behifar,A.A. Kakroodi,Majid Kiavarz,Azizi Ghasem
出处
期刊:Ecological Informatics [Elsevier]
卷期号:76: 102143-102143 被引量:12
标识
DOI:10.1016/j.ecoinf.2023.102143
摘要

Drought is considered one of the most destructive natural disasters, and many areas are experiencing water scarcity. Expanding knowledge of this phenomenon is a prerequisite for developing drought monitoring and forecasting tools. To this end, various indices are available for studying drought in different environments using field and remote sensing data. This study applies satellite-based indices for monitoring drought in different land cover, landforms, and climate classes. The in-situ standardized precipitation index (SPI) with a three-month time scale was applied to evaluate the performance of 13 remote sensing indices and parameters. The results indicated that the indices based on actual evapotranspiration, precipitation, and soil moisture, respectively, performed best in different parts of the basin. After additional analysis, the evapotranspiration condition index (ETCI), derived from actual evapotranspiration data, was deemed the optimal metric. The accuracy assessment results indicated that the correlation between the ETCI and the three-month SPI was 0.655, which was slightly higher than the actual evapotranspiration (0.637), and that the root-mean-squared error (RMSE) decreased from 0.71 to 0.65, indicating the best performance among the indices evaluated in the study area. Moreover, the drought map of the region was developed using the optimal indices, including the ETCI, the precipitation condition index (PCI), and the random forest (RF) algorithm. According to the results of the accuracy evaluation, the correlation between the estimated model and the observed three-month SPI values in 2017 was 0.72, with an RMSE of 0.60.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小崽总完成签到,获得积分10
1秒前
多罗罗完成签到,获得积分10
2秒前
落花生完成签到,获得积分10
2秒前
粗犷的灵松完成签到,获得积分10
3秒前
3秒前
yjzzz完成签到,获得积分10
3秒前
3秒前
路寻完成签到,获得积分10
3秒前
zzyt完成签到,获得积分10
3秒前
wen发布了新的文献求助10
4秒前
5秒前
明理小蜜蜂完成签到,获得积分20
5秒前
5秒前
Angelica1021完成签到 ,获得积分10
7秒前
zzyt发布了新的文献求助10
8秒前
8秒前
zhihaiyu完成签到 ,获得积分10
8秒前
lyric发布了新的文献求助10
8秒前
飞云之下发布了新的文献求助10
9秒前
星空完成签到 ,获得积分10
9秒前
9秒前
279完成签到,获得积分10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
小阳完成签到 ,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
jiangshanshan发布了新的文献求助10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
11秒前
池羽完成签到,获得积分10
11秒前
11秒前
Akim应助科研通管家采纳,获得10
11秒前
11秒前
无花果应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027