Near-infrared spectroscopy analysis of compound fertilizer based on GAF and quaternion convolution neural network

人工智能 模式识别(心理学) 主成分分析 格拉米安矩阵 偏最小二乘回归 计算机科学 数学 卷积神经网络 特征向量 机器学习 物理 量子力学
作者
Ailing Tan,Bolin Wang,Yong Zhao,Yunxin Wang,Jing Zhao,Alan X. Wang
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:240: 104900-104900 被引量:3
标识
DOI:10.1016/j.chemolab.2023.104900
摘要

This paper combines near infrared spectroscopy with deep learning theory to propose a rapid identification method for compound fertilizer based on gramian angular field (GAF) image coding and quaternion convolutional neural network (QCNN). First, the near-infrared (NIR) spectra of 200 samples of two types of compound with and without polyglutamic acid (γ-PGA) were collected and pretreated by multivariate scattering correction(MSC) and first derivative methods. Then, the one-dimensional (1D) NIR spectra were transformed into two-dimensional (2D) images by GAF coding method to express the spectral information more intuitively. Finally, three images of Gramian angular difference field (GADF), Gramian angular summation field (GASF) and their average images were formed into a pure quaternion matrix for parallel representation and were analyzed by the designed QCNN. The peak features and minor features were mined based on the automatic learning function of multi-layer structure of QCNN to establish a high-performance, qualitative model for identifying compound fertilizer. The experimental results show that the classification accuracy, sensitivity, and specificity of the identification model were 95.84%, 95.96% and 94.25%, respectively. Compared with the classification results based on traditional partial least square discrimination analysis(PLS-DA), principal component analysis combing with support vector machine classification(PCA-SVM), 1D convolution neural network (1DCNN) and GAF-CNN methods, the classification accuracy and adaptability of the model based on the proposed GAF-QCNN method have been significantly improved. The combination of GAF image of NIR spectra and QCNN developed in this study provides a novel approach for the intelligent modeling algorithm of NIR spectroscopy technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haha完成签到,获得积分10
2秒前
时尚冬卉发布了新的文献求助10
2秒前
朴素的月光完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
安安发布了新的文献求助10
3秒前
上官枫完成签到 ,获得积分10
3秒前
斯文败类应助江江江11采纳,获得10
3秒前
21完成签到,获得积分10
3秒前
加油干完成签到,获得积分10
5秒前
5秒前
hhchhcmxhf完成签到,获得积分10
7秒前
小莨应助妮妮采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
田様应助起风了采纳,获得10
8秒前
迷路的代曼完成签到,获得积分10
8秒前
Shaynin完成签到,获得积分10
8秒前
彭彭发布了新的文献求助10
9秒前
我要发nature完成签到,获得积分10
9秒前
10秒前
搞怪新晴发布了新的文献求助10
10秒前
深情安青应助佛光辉采纳,获得10
11秒前
陈梓锋发布了新的文献求助10
13秒前
标致踏歌发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
ding应助yang采纳,获得10
18秒前
18秒前
18秒前
11111完成签到,获得积分10
18秒前
19秒前
传奇3应助药学虫采纳,获得10
19秒前
江江江11完成签到,获得积分20
20秒前
Tracy麦子完成签到 ,获得积分10
20秒前
系小小鱼啊完成签到,获得积分10
20秒前
赵千灵发布了新的文献求助20
20秒前
21秒前
酷波er应助含蓄含双采纳,获得30
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733747
求助须知:如何正确求助?哪些是违规求助? 5350934
关于积分的说明 15325244
捐赠科研通 4878769
什么是DOI,文献DOI怎么找? 2621401
邀请新用户注册赠送积分活动 1570515
关于科研通互助平台的介绍 1527476