已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Near-infrared spectroscopy analysis of compound fertilizer based on GAF and quaternion convolution neural network

人工智能 模式识别(心理学) 主成分分析 格拉米安矩阵 偏最小二乘回归 计算机科学 数学 卷积神经网络 特征向量 机器学习 物理 量子力学
作者
Ailing Tan,Bolin Wang,Yong Zhao,Yunxin Wang,Jing Zhao,Alan X. Wang
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:240: 104900-104900 被引量:3
标识
DOI:10.1016/j.chemolab.2023.104900
摘要

This paper combines near infrared spectroscopy with deep learning theory to propose a rapid identification method for compound fertilizer based on gramian angular field (GAF) image coding and quaternion convolutional neural network (QCNN). First, the near-infrared (NIR) spectra of 200 samples of two types of compound with and without polyglutamic acid (γ-PGA) were collected and pretreated by multivariate scattering correction(MSC) and first derivative methods. Then, the one-dimensional (1D) NIR spectra were transformed into two-dimensional (2D) images by GAF coding method to express the spectral information more intuitively. Finally, three images of Gramian angular difference field (GADF), Gramian angular summation field (GASF) and their average images were formed into a pure quaternion matrix for parallel representation and were analyzed by the designed QCNN. The peak features and minor features were mined based on the automatic learning function of multi-layer structure of QCNN to establish a high-performance, qualitative model for identifying compound fertilizer. The experimental results show that the classification accuracy, sensitivity, and specificity of the identification model were 95.84%, 95.96% and 94.25%, respectively. Compared with the classification results based on traditional partial least square discrimination analysis(PLS-DA), principal component analysis combing with support vector machine classification(PCA-SVM), 1D convolution neural network (1DCNN) and GAF-CNN methods, the classification accuracy and adaptability of the model based on the proposed GAF-QCNN method have been significantly improved. The combination of GAF image of NIR spectra and QCNN developed in this study provides a novel approach for the intelligent modeling algorithm of NIR spectroscopy technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助忽远忽近的她采纳,获得30
1秒前
2秒前
3秒前
3秒前
DAZIDAZI02发布了新的文献求助10
7秒前
执着乐双完成签到,获得积分10
7秒前
疯度发布了新的文献求助10
8秒前
PPP完成签到,获得积分10
8秒前
我我我发布了新的文献求助10
9秒前
9秒前
10秒前
周钦完成签到,获得积分10
15秒前
HGBG2000发布了新的文献求助10
15秒前
17秒前
yulian完成签到,获得积分10
18秒前
脑洞疼应助百川采纳,获得10
18秒前
Sandy应助俊逸的无心采纳,获得20
22秒前
我我我完成签到,获得积分20
24秒前
Jasper应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Emma应助科研通管家采纳,获得40
25秒前
25秒前
26秒前
深情安青应助兴奋的万声采纳,获得10
26秒前
疯度完成签到,获得积分10
28秒前
yulian发布了新的文献求助10
28秒前
苞谷发布了新的文献求助10
31秒前
老马哥完成签到 ,获得积分0
32秒前
nnnnn完成签到,获得积分10
33秒前
小人物的坚持完成签到 ,获得积分10
34秒前
yy发布了新的文献求助10
36秒前
36秒前
coolkid应助现实的寻绿采纳,获得10
38秒前
41秒前
43秒前
甘sir完成签到 ,获得积分10
46秒前
47秒前
SCINEXUS完成签到,获得积分0
48秒前
May完成签到 ,获得积分20
50秒前
yuna完成签到 ,获得积分10
51秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965486
求助须知:如何正确求助?哪些是违规求助? 3510787
关于积分的说明 11155074
捐赠科研通 3245247
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804171