亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Near-infrared spectroscopy analysis of compound fertilizer based on GAF and quaternion convolution neural network

人工智能 模式识别(心理学) 主成分分析 格拉米安矩阵 偏最小二乘回归 计算机科学 数学 卷积神经网络 特征向量 机器学习 物理 量子力学
作者
Ailing Tan,Bolin Wang,Yong Zhao,Yunxin Wang,Jing Zhao,Alan X. Wang
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:240: 104900-104900 被引量:3
标识
DOI:10.1016/j.chemolab.2023.104900
摘要

This paper combines near infrared spectroscopy with deep learning theory to propose a rapid identification method for compound fertilizer based on gramian angular field (GAF) image coding and quaternion convolutional neural network (QCNN). First, the near-infrared (NIR) spectra of 200 samples of two types of compound with and without polyglutamic acid (γ-PGA) were collected and pretreated by multivariate scattering correction(MSC) and first derivative methods. Then, the one-dimensional (1D) NIR spectra were transformed into two-dimensional (2D) images by GAF coding method to express the spectral information more intuitively. Finally, three images of Gramian angular difference field (GADF), Gramian angular summation field (GASF) and their average images were formed into a pure quaternion matrix for parallel representation and were analyzed by the designed QCNN. The peak features and minor features were mined based on the automatic learning function of multi-layer structure of QCNN to establish a high-performance, qualitative model for identifying compound fertilizer. The experimental results show that the classification accuracy, sensitivity, and specificity of the identification model were 95.84%, 95.96% and 94.25%, respectively. Compared with the classification results based on traditional partial least square discrimination analysis(PLS-DA), principal component analysis combing with support vector machine classification(PCA-SVM), 1D convolution neural network (1DCNN) and GAF-CNN methods, the classification accuracy and adaptability of the model based on the proposed GAF-QCNN method have been significantly improved. The combination of GAF image of NIR spectra and QCNN developed in this study provides a novel approach for the intelligent modeling algorithm of NIR spectroscopy technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
5秒前
笨笨十三完成签到 ,获得积分10
10秒前
俭朴蜜蜂完成签到 ,获得积分10
11秒前
35秒前
Starr44发布了新的文献求助10
42秒前
欣喜的代容完成签到 ,获得积分10
47秒前
47秒前
51秒前
xj发布了新的文献求助10
52秒前
53秒前
见鹰完成签到,获得积分10
56秒前
54123发布了新的文献求助30
58秒前
见鹰发布了新的文献求助10
1分钟前
sheh发布了新的文献求助10
1分钟前
54123完成签到,获得积分10
1分钟前
科研通AI2S应助sheh采纳,获得10
1分钟前
Starr44完成签到,获得积分10
1分钟前
鹏虫虫发布了新的文献求助10
1分钟前
华仔应助haha采纳,获得30
1分钟前
杳鸢应助mmyhn采纳,获得50
1分钟前
杳鸢应助mmyhn采纳,获得50
2分钟前
经冰夏完成签到 ,获得积分10
2分钟前
2分钟前
janice发布了新的文献求助10
2分钟前
janice完成签到,获得积分10
2分钟前
温暖南莲应助janice采纳,获得20
2分钟前
woyufengtian完成签到,获得积分10
3分钟前
银色的喵咪应助mmyhn采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
4分钟前
共享精神应助科研通管家采纳,获得30
4分钟前
俺爱SCI完成签到 ,获得积分10
5分钟前
5分钟前
啊是是是发布了新的文献求助10
5分钟前
bingshuaizhao发布了新的文献求助10
5分钟前
5分钟前
5分钟前
隐形耷发布了新的文献求助10
5分钟前
zpli完成签到 ,获得积分10
5分钟前
赘婿应助Langsam采纳,获得30
5分钟前
花开发布了新的文献求助10
5分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801908
关于积分的说明 7845974
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748