Multimodal learning on graphs for disease relation extraction

关系抽取 计算机科学 推论 人工智能 知识图 信息抽取 机器学习 图形 自然语言处理 关系(数据库) 概念图 情报检索 数据挖掘 知识表示与推理 理论计算机科学
作者
Yucong Lin,Keming Lu,Sheng Yu,Tianxi Cai,Marinka Žitnik
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:143: 104415-104415 被引量:10
标识
DOI:10.1016/j.jbi.2023.104415
摘要

Disease knowledge graphs have emerged as a powerful tool for artificial intelligence to connect, organize, and access diverse information about diseases. Relations between disease concepts are often distributed across multiple datasets, including unstructured plain text datasets and incomplete disease knowledge graphs. Extracting disease relations from multimodal data sources is thus crucial for constructing accurate and comprehensive disease knowledge graphs. We introduce REMAP, a multimodal approach for disease relation extraction. The REMAP machine learning approach jointly embeds a partial, incomplete knowledge graph and a medical language dataset into a compact latent vector space, aligning the multimodal embeddings for optimal disease relation extraction. Additionally, REMAP utilizes a decoupled model structure to enable inference in single-modal data, which can be applied under missing modality scenarios. We apply the REMAP approach to a disease knowledge graph with 96,913 relations and a text dataset of 1.24 million sentences. On a dataset annotated by human experts, REMAP improves language-based disease relation extraction by 10.0% (accuracy) and 17.2% (F1-score) by fusing disease knowledge graphs with language information. Furthermore, REMAP leverages text information to recommend new relationships in the knowledge graph, outperforming graph-based methods by 8.4% (accuracy) and 10.4% (F1-score). REMAP is a flexible multimodal approach for extracting disease relations by fusing structured knowledge and language information. This approach provides a powerful model to easily find, access, and evaluate relations between disease concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小菜鸟完成签到,获得积分10
刚刚
刚刚
西西弗斯完成签到,获得积分10
刚刚
KT2440完成签到,获得积分10
1秒前
顾阿秀发布了新的文献求助10
1秒前
1秒前
1秒前
gnr2000完成签到,获得积分0
1秒前
2秒前
2秒前
BareBear应助赖道之采纳,获得10
2秒前
LEMON完成签到,获得积分10
2秒前
Ava应助buuyoo采纳,获得10
3秒前
情怀应助liuwei采纳,获得10
3秒前
aaefv完成签到,获得积分10
3秒前
小小菜鸟发布了新的文献求助10
3秒前
深情安青应助123采纳,获得10
3秒前
赫初晴完成签到 ,获得积分10
3秒前
平淡的亦丝应助明研采纳,获得20
3秒前
5秒前
库外发布了新的文献求助10
6秒前
汉堡包应助清新的冷松采纳,获得10
6秒前
从心应助LiShin采纳,获得10
6秒前
帅气的听莲完成签到,获得积分10
6秒前
英姑应助Areslcy采纳,获得10
6秒前
善学以致用应助zxz采纳,获得10
7秒前
whatever应助luoshi采纳,获得10
8秒前
8秒前
科研通AI5应助徐徐采纳,获得10
9秒前
shouyu29应助MADKAI采纳,获得10
9秒前
shouyu29应助MADKAI采纳,获得10
9秒前
Lucas应助MADKAI采纳,获得10
9秒前
Vii应助MADKAI采纳,获得10
9秒前
李爱国应助MADKAI采纳,获得10
9秒前
李健应助MADKAI采纳,获得10
9秒前
烟花应助MADKAI采纳,获得20
9秒前
香蕉觅云应助MADKAI采纳,获得10
9秒前
科研通AI2S应助MADKAI采纳,获得10
9秒前
Singularity应助MADKAI采纳,获得10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762