Deep Semantic-Aware Proxy Hashing for Multi-Label Cross-Modal Retrieval

计算机科学 散列函数 语义鸿沟 人工智能 情态动词 数据挖掘 特征学习 模式识别(心理学) 情报检索 图像检索 图像(数学) 计算机安全 化学 高分子化学
作者
Yadong Huo,Qibing Qin,Jiangyan Dai,Lei Wang,Wenfeng Zhang,Lei Huang,Chengduan Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (1): 576-589 被引量:21
标识
DOI:10.1109/tcsvt.2023.3285266
摘要

Deep hashing has attracted broad interest in cross-modal retrieval because of its low cost and efficient retrieval benefits. To capture the semantic information of raw samples and alleviate the semantic gap, supervised cross-modal hashing methods that utilize label information which could map raw samples from different modalities into a unified common space, are proposed. Although making great progress, existing deep cross-modal hashing methods are suffering from some problems, such as: 1) considering multi-label cross-modal retrieval, proxy-based methods ignore the data-to-data relations and fail to explore the combination of the different categories profoundly, which could lead to some samples without common categories being embedded in the vicinity; 2) for feature representation, image feature extractors containing multiple convolutional layers cannot fully obtain global information of images, which results in the generation of sub-optimal binary hash codes. In this paper, by extending the proxy-based mechanism to multi-label cross-modal retrieval, we propose a novel Deep Semantic-aware Proxy Hashing (DSPH) framework, which could embed multi-modal multi-label data into a uniform discrete space and capture fine-grained semantic relations between raw samples. Specifically, by learning multi-modal multi-label proxy terms and multi-modal irrelevant terms jointly, the semantic-aware proxy loss is designed to capture multi-label correlations and preserve the correct fine-grained similarity ranking among samples, alleviating inter-modal semantic gaps. In addition, for feature representation, two transformer encoders are proposed as backbone networks for images and text, respectively, in which the image transformer encoder is introduced to obtain global information of the input image by modeling long-range visual dependencies. We have conducted extensive experiments on three baseline multi-label datasets, and the experimental results show that our DSPH framework achieves better performance than state-of-the-art cross-modal hashing methods. The code for the implementation of our DSPH framework is available at https://github.com/QinLab-WFU/DSPH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鲤鱼发布了新的文献求助10
2秒前
2秒前
专注巨人发布了新的文献求助10
4秒前
等待甜瓜发布了新的文献求助10
6秒前
文艺月亮完成签到,获得积分10
6秒前
yx_cheng应助Cookiee采纳,获得10
6秒前
7秒前
郭团团完成签到,获得积分10
8秒前
Emma发布了新的文献求助10
9秒前
艺馨完成签到,获得积分10
11秒前
谦让的樱发布了新的文献求助10
11秒前
雪山飞龙发布了新的文献求助10
12秒前
顺利的梦菲完成签到 ,获得积分10
13秒前
dnnnsns发布了新的文献求助30
13秒前
涂山路完成签到,获得积分10
14秒前
佳佳应助小天狼星采纳,获得10
14秒前
15秒前
15秒前
司空蓝完成签到,获得积分10
16秒前
17秒前
传奇3应助刘硕采纳,获得10
18秒前
19秒前
liu完成签到,获得积分10
19秒前
June发布了新的文献求助20
21秒前
liu发布了新的文献求助10
21秒前
满眼星辰发布了新的文献求助10
22秒前
科研鸟发布了新的文献求助10
22秒前
22秒前
可可完成签到,获得积分10
24秒前
大翟完成签到 ,获得积分10
24秒前
善学以致用应助ddddd采纳,获得10
24秒前
25秒前
25秒前
爆米花应助大力芸采纳,获得10
27秒前
研友_VZG7GZ应助谦让的樱采纳,获得10
27秒前
个性紫完成签到 ,获得积分10
28秒前
Robert完成签到,获得积分10
28秒前
heavennew完成签到,获得积分10
28秒前
st发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403