A dual-transformation with contrastive learning framework for lymph node metastasis prediction in pancreatic cancer

判别式 转化(遗传学) 胰腺癌 医学 模式识别(心理学) 癌症 计算机科学 人工智能 机器学习 内科学 化学 生物化学 基因
作者
Xiahan Chen,Weishen Wang,Yu Jiang,Xiaohua Qian
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:85: 102753-102753 被引量:10
标识
DOI:10.1016/j.media.2023.102753
摘要

Pancreatic cancer is a malignant tumor, and its high recurrence rate after surgery is related to the lymph node metastasis status. In clinical practice, a preoperative imaging prediction method is necessary for prognosis assessment and treatment decision; however, there are two major challenges: insufficient data and difficulty in discriminative feature extraction. This paper proposed a deep learning model to predict lymph node metastasis in pancreatic cancer using multiphase CT, where a dual-transformation with contrastive learning framework is developed to overcome the challenges in fine-grained prediction with small sample sizes. Specifically, we designed a novel dynamic surface projection method to transform 3D data into 2D images for effectively using the 3D information, preserving the spatial correlation of the original texture information and reducing computational resources. Then, this dynamic surface projection was combined with the spiral transformation to establish a dual-transformation method for enhancing the diversity and complementarity of the dataset. A dual-transformation-based data augmentation method was also developed to produce numerous 2D-transformed images to alleviate the effect of insufficient samples. Finally, the dual-transformation-guided contrastive learning scheme based on intra-space-transformation consistency and inter-class specificity was designed to mine additional supervised information, thereby extracting more discriminative features. Extensive experiments have shown the promising performance of the proposed model for predicting lymph node metastasis in pancreatic cancer. Our dual-transformation with contrastive learning scheme was further confirmed on an external public dataset, representing a potential paradigm for the fine-grained classification of oncological images with small sample sizes. The code will be released at https://github.com/SJTUBME-QianLab/Dual-transformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少年游发布了新的文献求助10
刚刚
ZeKaWa应助KK采纳,获得10
1秒前
清秀的发夹完成签到,获得积分10
1秒前
11发布了新的文献求助10
1秒前
2秒前
昭明完成签到 ,获得积分10
2秒前
2秒前
AprilLeung完成签到 ,获得积分10
3秒前
3秒前
LHQ发布了新的文献求助10
4秒前
Tourist应助Kyrie采纳,获得10
4秒前
zhang完成签到 ,获得积分10
5秒前
冷静水杯发布了新的文献求助10
5秒前
刘盼红发布了新的文献求助10
5秒前
万能图书馆应助陈好采纳,获得50
5秒前
小杭76应助Ben采纳,获得10
6秒前
感动城发布了新的文献求助10
6秒前
黄姗姗发布了新的文献求助30
6秒前
FashionBoy应助缓慢耳机采纳,获得10
6秒前
NexusExplorer应助大萝贝采纳,获得10
6秒前
万能图书馆应助时舒采纳,获得30
6秒前
diguohu发布了新的文献求助10
8秒前
大个应助儒雅的翠琴采纳,获得30
9秒前
9秒前
搜集达人应助生动路人采纳,获得10
10秒前
10秒前
打打应助狂暴的蜗牛0713采纳,获得10
11秒前
11秒前
领导范儿应助迷人的千秋采纳,获得10
12秒前
12秒前
许院士发布了新的文献求助10
13秒前
爆米花应助健忘的板凳采纳,获得10
13秒前
Wy发布了新的文献求助10
14秒前
Tsuki完成签到,获得积分10
14秒前
14秒前
赵琪发布了新的文献求助10
14秒前
黄姗姗完成签到,获得积分10
15秒前
科研通AI5应助LM采纳,获得10
15秒前
ding应助黄帅比采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111526
求助须知:如何正确求助?哪些是违规求助? 4319720
关于积分的说明 13459271
捐赠科研通 4150427
什么是DOI,文献DOI怎么找? 2274173
邀请新用户注册赠送积分活动 1276148
关于科研通互助平台的介绍 1214369