A dual-transformation with contrastive learning framework for lymph node metastasis prediction in pancreatic cancer

判别式 转化(遗传学) 胰腺癌 医学 模式识别(心理学) 癌症 计算机科学 人工智能 机器学习 内科学 生物化学 基因 化学
作者
Xiahan Chen,Weishen Wang,Yu Jiang,Xiaohua Qian
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:85: 102753-102753 被引量:10
标识
DOI:10.1016/j.media.2023.102753
摘要

Pancreatic cancer is a malignant tumor, and its high recurrence rate after surgery is related to the lymph node metastasis status. In clinical practice, a preoperative imaging prediction method is necessary for prognosis assessment and treatment decision; however, there are two major challenges: insufficient data and difficulty in discriminative feature extraction. This paper proposed a deep learning model to predict lymph node metastasis in pancreatic cancer using multiphase CT, where a dual-transformation with contrastive learning framework is developed to overcome the challenges in fine-grained prediction with small sample sizes. Specifically, we designed a novel dynamic surface projection method to transform 3D data into 2D images for effectively using the 3D information, preserving the spatial correlation of the original texture information and reducing computational resources. Then, this dynamic surface projection was combined with the spiral transformation to establish a dual-transformation method for enhancing the diversity and complementarity of the dataset. A dual-transformation-based data augmentation method was also developed to produce numerous 2D-transformed images to alleviate the effect of insufficient samples. Finally, the dual-transformation-guided contrastive learning scheme based on intra-space-transformation consistency and inter-class specificity was designed to mine additional supervised information, thereby extracting more discriminative features. Extensive experiments have shown the promising performance of the proposed model for predicting lymph node metastasis in pancreatic cancer. Our dual-transformation with contrastive learning scheme was further confirmed on an external public dataset, representing a potential paradigm for the fine-grained classification of oncological images with small sample sizes. The code will be released at https://github.com/SJTUBME-QianLab/Dual-transformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小郭小郭福气多多完成签到,获得积分10
4秒前
醋溜滑板完成签到 ,获得积分10
5秒前
拉长的远山完成签到,获得积分10
5秒前
科研通AI5应助曹雄采纳,获得10
5秒前
8秒前
12秒前
俏皮芷蕊完成签到,获得积分20
12秒前
13秒前
redking发布了新的文献求助10
13秒前
13秒前
万能图书馆应助dudu采纳,获得10
15秒前
16秒前
奋斗蝴蝶完成签到,获得积分10
17秒前
17秒前
18秒前
yh发布了新的文献求助10
18秒前
憨憨发布了新的文献求助10
18秒前
wxs完成签到,获得积分10
18秒前
allureyan完成签到,获得积分10
19秒前
立冏商发布了新的文献求助10
21秒前
浮雨微清完成签到,获得积分10
21秒前
鲤鱼又菡发布了新的文献求助10
22秒前
23秒前
redking完成签到,获得积分10
23秒前
SciGPT应助yh采纳,获得10
24秒前
烟花应助星野Nana_采纳,获得10
25秒前
25秒前
jdjd发布了新的文献求助10
30秒前
CC发布了新的文献求助10
30秒前
科目三应助立冏商采纳,获得10
30秒前
煊陌完成签到 ,获得积分10
31秒前
鲤鱼又菡完成签到,获得积分10
31秒前
32秒前
完美凝海完成签到,获得积分10
33秒前
图图完成签到 ,获得积分10
34秒前
35秒前
35秒前
36秒前
izzhan发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425