清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A dual-transformation with contrastive learning framework for lymph node metastasis prediction in pancreatic cancer

判别式 转化(遗传学) 胰腺癌 医学 模式识别(心理学) 癌症 计算机科学 人工智能 机器学习 内科学 生物化学 基因 化学
作者
Xiahan Chen,Weishen Wang,Yu Jiang,Xiaohua Qian
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:85: 102753-102753 被引量:8
标识
DOI:10.1016/j.media.2023.102753
摘要

Pancreatic cancer is a malignant tumor, and its high recurrence rate after surgery is related to the lymph node metastasis status. In clinical practice, a preoperative imaging prediction method is necessary for prognosis assessment and treatment decision; however, there are two major challenges: insufficient data and difficulty in discriminative feature extraction. This paper proposed a deep learning model to predict lymph node metastasis in pancreatic cancer using multiphase CT, where a dual-transformation with contrastive learning framework is developed to overcome the challenges in fine-grained prediction with small sample sizes. Specifically, we designed a novel dynamic surface projection method to transform 3D data into 2D images for effectively using the 3D information, preserving the spatial correlation of the original texture information and reducing computational resources. Then, this dynamic surface projection was combined with the spiral transformation to establish a dual-transformation method for enhancing the diversity and complementarity of the dataset. A dual-transformation-based data augmentation method was also developed to produce numerous 2D-transformed images to alleviate the effect of insufficient samples. Finally, the dual-transformation-guided contrastive learning scheme based on intra-space-transformation consistency and inter-class specificity was designed to mine additional supervised information, thereby extracting more discriminative features. Extensive experiments have shown the promising performance of the proposed model for predicting lymph node metastasis in pancreatic cancer. Our dual-transformation with contrastive learning scheme was further confirmed on an external public dataset, representing a potential paradigm for the fine-grained classification of oncological images with small sample sizes. The code will be released at https://github.com/SJTUBME-QianLab/Dual-transformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助gszy1975采纳,获得10
13秒前
22秒前
22秒前
炫白发布了新的文献求助10
27秒前
55秒前
1分钟前
1分钟前
1分钟前
逃之姚姚完成签到 ,获得积分10
2分钟前
CHSLN完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
gszy1975发布了新的文献求助10
3分钟前
4分钟前
4分钟前
吴嘉俊完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
知行合一完成签到 ,获得积分10
6分钟前
6分钟前
Hollen完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
huhu完成签到 ,获得积分10
7分钟前
Andrew发布了新的文献求助10
7分钟前
7分钟前
李爱国应助Andrew采纳,获得200
7分钟前
NexusExplorer应助科研通管家采纳,获得10
7分钟前
普萘洛尔完成签到,获得积分10
7分钟前
知行者完成签到 ,获得积分10
7分钟前
炫白完成签到,获得积分10
8分钟前
8分钟前
酷波er应助炫白采纳,获得10
8分钟前
宇文非笑完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
Ava应助cc采纳,获得10
10分钟前
10分钟前
lanxinge完成签到 ,获得积分10
10分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338996
求助须知:如何正确求助?哪些是违规求助? 2967044
关于积分的说明 8627864
捐赠科研通 2646460
什么是DOI,文献DOI怎么找? 1449207
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660162