A dual-transformation with contrastive learning framework for lymph node metastasis prediction in pancreatic cancer

判别式 转化(遗传学) 胰腺癌 医学 模式识别(心理学) 癌症 计算机科学 人工智能 机器学习 内科学 生物化学 基因 化学
作者
Xiahan Chen,Weishen Wang,Yu Jiang,Xiaohua Qian
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:85: 102753-102753 被引量:10
标识
DOI:10.1016/j.media.2023.102753
摘要

Pancreatic cancer is a malignant tumor, and its high recurrence rate after surgery is related to the lymph node metastasis status. In clinical practice, a preoperative imaging prediction method is necessary for prognosis assessment and treatment decision; however, there are two major challenges: insufficient data and difficulty in discriminative feature extraction. This paper proposed a deep learning model to predict lymph node metastasis in pancreatic cancer using multiphase CT, where a dual-transformation with contrastive learning framework is developed to overcome the challenges in fine-grained prediction with small sample sizes. Specifically, we designed a novel dynamic surface projection method to transform 3D data into 2D images for effectively using the 3D information, preserving the spatial correlation of the original texture information and reducing computational resources. Then, this dynamic surface projection was combined with the spiral transformation to establish a dual-transformation method for enhancing the diversity and complementarity of the dataset. A dual-transformation-based data augmentation method was also developed to produce numerous 2D-transformed images to alleviate the effect of insufficient samples. Finally, the dual-transformation-guided contrastive learning scheme based on intra-space-transformation consistency and inter-class specificity was designed to mine additional supervised information, thereby extracting more discriminative features. Extensive experiments have shown the promising performance of the proposed model for predicting lymph node metastasis in pancreatic cancer. Our dual-transformation with contrastive learning scheme was further confirmed on an external public dataset, representing a potential paradigm for the fine-grained classification of oncological images with small sample sizes. The code will be released at https://github.com/SJTUBME-QianLab/Dual-transformation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搬砖小羊发布了新的文献求助10
1秒前
a111完成签到,获得积分10
1秒前
杭姝完成签到,获得积分10
1秒前
洛子夜发布了新的文献求助10
1秒前
2秒前
思源应助宇宙超人007008采纳,获得10
2秒前
轻舟空渡完成签到,获得积分10
2秒前
2秒前
Wangjing完成签到,获得积分10
3秒前
3秒前
xiaowentu完成签到,获得积分10
4秒前
jadexu完成签到,获得积分10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
顾念完成签到,获得积分10
6秒前
DTOU应助顺利觅松采纳,获得10
6秒前
hehe完成签到,获得积分10
6秒前
Freddie完成签到,获得积分10
6秒前
stephanie96完成签到,获得积分10
6秒前
天气预报完成签到,获得积分10
6秒前
6秒前
橙子完成签到 ,获得积分10
6秒前
www完成签到,获得积分10
6秒前
xiao完成签到 ,获得积分10
7秒前
cheng发布了新的文献求助10
7秒前
乐乐应助轻舟空渡采纳,获得10
7秒前
7秒前
从容灭绝发布了新的文献求助60
7秒前
7秒前
高贵振家发布了新的文献求助30
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
勤恳的语蓉完成签到,获得积分10
8秒前
yaooo发布了新的文献求助10
8秒前
菠萝冰完成签到,获得积分10
9秒前
星辰大海应助搬砖小羊采纳,获得10
9秒前
Erica完成签到,获得积分10
10秒前
balabala完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027