A dual-transformation with contrastive learning framework for lymph node metastasis prediction in pancreatic cancer

判别式 转化(遗传学) 胰腺癌 医学 模式识别(心理学) 癌症 计算机科学 人工智能 机器学习 内科学 化学 生物化学 基因
作者
Xiahan Chen,Weishen Wang,Yu Jiang,Xiaohua Qian
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:85: 102753-102753 被引量:10
标识
DOI:10.1016/j.media.2023.102753
摘要

Pancreatic cancer is a malignant tumor, and its high recurrence rate after surgery is related to the lymph node metastasis status. In clinical practice, a preoperative imaging prediction method is necessary for prognosis assessment and treatment decision; however, there are two major challenges: insufficient data and difficulty in discriminative feature extraction. This paper proposed a deep learning model to predict lymph node metastasis in pancreatic cancer using multiphase CT, where a dual-transformation with contrastive learning framework is developed to overcome the challenges in fine-grained prediction with small sample sizes. Specifically, we designed a novel dynamic surface projection method to transform 3D data into 2D images for effectively using the 3D information, preserving the spatial correlation of the original texture information and reducing computational resources. Then, this dynamic surface projection was combined with the spiral transformation to establish a dual-transformation method for enhancing the diversity and complementarity of the dataset. A dual-transformation-based data augmentation method was also developed to produce numerous 2D-transformed images to alleviate the effect of insufficient samples. Finally, the dual-transformation-guided contrastive learning scheme based on intra-space-transformation consistency and inter-class specificity was designed to mine additional supervised information, thereby extracting more discriminative features. Extensive experiments have shown the promising performance of the proposed model for predicting lymph node metastasis in pancreatic cancer. Our dual-transformation with contrastive learning scheme was further confirmed on an external public dataset, representing a potential paradigm for the fine-grained classification of oncological images with small sample sizes. The code will be released at https://github.com/SJTUBME-QianLab/Dual-transformation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SongWhizz发布了新的文献求助10
刚刚
大模型应助布衣采纳,获得10
1秒前
Sonny发布了新的文献求助10
1秒前
Kristin完成签到,获得积分10
1秒前
mmm驳回了bkagyin应助
3秒前
量子星尘发布了新的文献求助10
4秒前
HeyU发布了新的文献求助10
4秒前
小倒霉蛋完成签到 ,获得积分10
4秒前
4秒前
4秒前
emilybei发布了新的文献求助10
5秒前
科研通AI6应助larychen采纳,获得10
5秒前
6秒前
畅快的寻凝完成签到,获得积分10
7秒前
lin发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
领导范儿应助诚心黑夜采纳,获得10
10秒前
10秒前
TommyLeo关注了科研通微信公众号
11秒前
hh完成签到,获得积分10
11秒前
Sonny发布了新的文献求助10
11秒前
大哥爱发文章完成签到,获得积分10
12秒前
13秒前
可爱的函函应助larychen采纳,获得10
13秒前
依依发布了新的文献求助10
14秒前
14秒前
咩咩羊发布了新的文献求助10
14秒前
yuyan发布了新的文献求助10
14秒前
樂楽完成签到,获得积分20
15秒前
tree完成签到,获得积分10
15秒前
多宝鱼儿完成签到,获得积分20
16秒前
科研通AI6应助hhhhmmmm采纳,获得30
16秒前
dyyisash完成签到 ,获得积分10
16秒前
16秒前
Owen应助柯亦云采纳,获得10
17秒前
Lynn完成签到 ,获得积分10
17秒前
TAZIA完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586355
求助须知:如何正确求助?哪些是违规求助? 4669622
关于积分的说明 14779253
捐赠科研通 4619608
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830