亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Topic Classification of Online News Articles Using Optimized Machine Learning Models

水准点(测量) 机器学习 计算机科学 分类 支持向量机 朴素贝叶斯分类器 人工智能 超参数 随机森林 随机梯度下降算法 鉴定(生物学) 任务(项目管理) 数据挖掘 人工神经网络 工程类 植物 大地测量学 系统工程 生物 地理
作者
Shahzada Daud,Muti Ullah,Azmat Ullah Khan,Tanzila Saba,Robertas Damaševičius,Abdul Sattar
出处
期刊:Computers [MDPI AG]
卷期号:12 (1): 16-16 被引量:4
标识
DOI:10.3390/computers12010016
摘要

Much news is available online, and not all is categorized. A few researchers have carried out work on news classification in the past, and most of the work focused on fake news identification. Most of the work performed on news categorization is carried out on a benchmark dataset. The problem with the benchmark dataset is that model trained with it is not applicable in the real world as the data are pre-organized. This study used machine learning (ML) techniques to categorize online news articles as these techniques are cheaper in terms of computational needs and are less complex. This study proposed the hyperparameter-optimized support vector machines (SVM) to categorize news articles according to their respective category. Additionally, five other ML techniques, Stochastic Gradient Descent (SGD), Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbor (KNN), and Naïve Bayes (NB), were optimized for comparison for the news categorization task. The results showed that the optimized SVM model performed better than other models, while without optimization, its performance was worse than other ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
刚刚
Owen应助babao采纳,获得30
1秒前
nanne发布了新的文献求助30
2秒前
lulumomoxixi完成签到 ,获得积分10
3秒前
光合作用完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
豆都发布了新的文献求助10
8秒前
务实书包完成签到,获得积分10
8秒前
徐志豪发布了新的文献求助10
10秒前
zorro3574发布了新的文献求助10
11秒前
16秒前
zorro3574完成签到,获得积分10
19秒前
木有完成签到 ,获得积分10
20秒前
22秒前
爆米花应助豆都采纳,获得10
23秒前
25秒前
maoaq完成签到 ,获得积分10
28秒前
30秒前
21145077发布了新的文献求助10
35秒前
37秒前
38秒前
babao发布了新的文献求助30
40秒前
无题完成签到,获得积分10
43秒前
43秒前
研友_VZG7GZ应助青柠采纳,获得10
47秒前
babao完成签到,获得积分20
49秒前
Mmmmmmm发布了新的文献求助30
49秒前
52秒前
58秒前
DD完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
我是老大应助李桂芳采纳,获得10
1分钟前
浮浮世世应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490