The effects investigation of data-driven fitting cycle and deep deterministic policy gradient algorithm on energy management strategy of dual-motor electric bus

动力传动系统 行驶循环 水准点(测量) 对偶(语法数字) 汽车工程 电气化 能源管理 计算机科学 能源管理系统 算法 电动汽车 工程类 功率(物理) 模拟 能量(信号处理) 数学 扭矩 艺术 统计 物理 文学类 电气工程 热力学 大地测量学 量子力学 地理
作者
Kaixuan Zhang,Jiageng Ruan,Tongyang Li,Hanghang Cui,Changcheng Wu
出处
期刊:Energy [Elsevier BV]
卷期号:269: 126760-126760 被引量:19
标识
DOI:10.1016/j.energy.2023.126760
摘要

Nowadays, the trend of powertrain electrification in the public transportation sector is clear. To meet the dramatic load variation and relatively high handling stability requirements for battery electric buses, the dual-motor four-wheel powertrain architecture attracts great attention in recent years. Although the bus routes are fixed, the driving speed and load vary significantly with time, season, passenger capacity, and traffic conditions, which presents a serious challenge for efficient power coupling in a dual-motor system to reduce energy consumption. This study provides a data-driven fitting cycle for the specific bus route. Then, Deep Deterministic Policy Gradient (DDPG) algorithm is introduced in Energy Management Strategy (EMS) design to improve the vehicle's economic performance with uncertain demand in the unknown cycle. The simulation results show that the proposed DDPG-EMS achieves 93.91%–97.66% of the benchmark Dynamic Programming (DP) – based EMS under various testing cycles. In addition, the comparison of DDPG-EMS agent trained by fitting cycle, standard cycle, and real driving data reached 97.2%–97.66%, 93.91%–97.0%, and 94.41%–96.0% of DP, respectively, which demonstrates the effectiveness of data-driven fitting cycle and reinforcement learning algorithm combination in EMS design for dual-motor electrified bus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Robe发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
2秒前
lan199623发布了新的文献求助10
2秒前
kkk发布了新的文献求助10
3秒前
3秒前
3秒前
欧阳振应助沉寂的希望采纳,获得10
3秒前
爱逃不过初心完成签到,获得积分10
3秒前
王多肉完成签到,获得积分10
4秒前
福star高照完成签到,获得积分10
5秒前
5秒前
6秒前
zydaphne完成签到 ,获得积分10
6秒前
7秒前
7秒前
suiFeng完成签到,获得积分10
7秒前
OSASACB完成签到 ,获得积分10
7秒前
syfsyfsyf完成签到,获得积分20
8秒前
LZH完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
Yellue完成签到,获得积分10
9秒前
10秒前
饱满的鑫发布了新的文献求助10
10秒前
10秒前
LZH发布了新的文献求助10
10秒前
简单白风完成签到 ,获得积分10
10秒前
11秒前
11秒前
数学情缘发布了新的文献求助10
11秒前
右右发布了新的文献求助10
12秒前
12秒前
ouou发布了新的文献求助10
13秒前
13秒前
天真囧发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600