电合成
选择性
催化作用
锑
硫黄
化学
金属
无机化学
过氧化氢
材料科学
电化学
物理化学
电极
有机化学
作者
Minmin Yan,Zengxi Wei,Zhichao Gong,Bernt Johannessen,Gonglan Ye,Guanchao He,Бо Лю,Shuangliang Zhao,Chunyu Cui,Huilong Fei
标识
DOI:10.1038/s41467-023-36078-y
摘要
Abstract Selective two-electron (2e − ) oxygen reduction reaction (ORR) offers great opportunities for hydrogen peroxide (H 2 O 2 ) electrosynthesis and its widespread employment depends on identifying cost-effective catalysts with high activity and selectivity. Main-group metal and nitrogen coordinated carbons (M-N-Cs) are promising but remain largely underexplored due to the low metal-atom density and the lack of understanding in the structure-property correlation. Here, we report using a nanoarchitectured Sb 2 S 3 template to synthesize high-density (10.32 wt%) antimony (Sb) single atoms on nitrogen- and sulfur-codoped carbon nanofibers (Sb-NSCF), which exhibits both high selectivity (97.2%) and mass activity (114.9 A g −1 at 0.65 V) toward the 2e − ORR in alkaline electrolyte. Further, when evaluated with a practical flow cell, Sb-NSCF shows a high production rate of 7.46 mol g catalyst −1 h −1 with negligible loss in activity and selectivity in a 75-h continuous electrolysis. Density functional theory calculations demonstrate that the coordination configuration and the S dopants synergistically contribute to the enhanced 2e − ORR activity and selectivity of the Sb-N 4 moieties.
科研通智能强力驱动
Strongly Powered by AbleSci AI