材料科学
超级电容器
电容
微观结构
电极
纳米孔
纳米技术
储能
光电子学
空位缺陷
化学工程
复合材料
凝聚态物理
功率(物理)
化学
物理
物理化学
量子力学
工程类
作者
Arpit Thomas,Ambrish Kumar,Gopinath Perumal,Ram K. Sharma,Vignesh K. Manivasagam,Ketul C. Popat,Aditya Ayyagari,Anqi Yu,Shalini Tripathi,Edgar C. Buck,Bharat Gwalani,Meha Bhogra,Harpreet Singh Arora
标识
DOI:10.1021/acsami.2c16818
摘要
High-performance energy storage devices (HPEDs) play a critical role in the realization of clean energy and thus enable the overarching pursuit of nonpolluting, green technologies. Supercapacitors are one class of such lucrative HPEDs; however, a serious limiting factor of supercapacitor technology is its sub-par energy density. This report presents hitherto unchartered pathway of physical deformation, chemical dealloying, and microstructure engineering to produce ultrahigh-capacitance, energy-dense NiMn alloy electrodes. The activated electrode delivered an ultrahigh specific-capacitance of 2700 F/cm3 at 0.5 A/cm3. The symmetric device showcased an excellent energy density of 96.94 Wh/L and a remarkable cycle life of 95% retention after 10,000 cycles. Transmission electron microscopy and atom probe tomography studies revealed the evolution of a unique hierarchical microstructure comprising fine Ni/NiMnO3 nanoligaments within MnO2-rich nanoflakes. Theoretical analysis using density functional theory showed semimetallic nature of the nanoscaled oxygen-vacancy-rich NiMnO3 structure, highlighting enhanced carrier concentration and electronic conductivity of the active region. Furthermore, the geometrical model of NiMnO3 crystals revealed relatively large voids, likely providing channels for the ion intercalation/de-intercalation. The current processing approach is highly adaptable and can be applied to a wide range of material systems for designing highly efficient electrodes for energy-storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI