Oxygen-Vacancy Abundant Nanoporous Ni/NiMnO3/MnO2@NiMn Electrodes with Ultrahigh Capacitance and Energy Density for Supercapacitors

材料科学 超级电容器 电容 微观结构 电极 纳米孔 纳米技术 储能 光电子学 空位缺陷 化学工程 复合材料 凝聚态物理 量子力学 物理 工程类 物理化学 功率(物理) 化学
作者
Arpit Thomas,Ambrish Kumar,Gopinath Perumal,Ram K. Sharma,Vignesh K. Manivasagam,Ketul C. Popat,Aditya Ayyagari,Anqi Yu,Shalini Tripathi,Edgar C. Buck,Bharat Gwalani,Meha Bhogra,Harpreet Singh Arora
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (4): 5086-5098 被引量:12
标识
DOI:10.1021/acsami.2c16818
摘要

High-performance energy storage devices (HPEDs) play a critical role in the realization of clean energy and thus enable the overarching pursuit of nonpolluting, green technologies. Supercapacitors are one class of such lucrative HPEDs; however, a serious limiting factor of supercapacitor technology is its sub-par energy density. This report presents hitherto unchartered pathway of physical deformation, chemical dealloying, and microstructure engineering to produce ultrahigh-capacitance, energy-dense NiMn alloy electrodes. The activated electrode delivered an ultrahigh specific-capacitance of 2700 F/cm3 at 0.5 A/cm3. The symmetric device showcased an excellent energy density of 96.94 Wh/L and a remarkable cycle life of 95% retention after 10,000 cycles. Transmission electron microscopy and atom probe tomography studies revealed the evolution of a unique hierarchical microstructure comprising fine Ni/NiMnO3 nanoligaments within MnO2-rich nanoflakes. Theoretical analysis using density functional theory showed semimetallic nature of the nanoscaled oxygen-vacancy-rich NiMnO3 structure, highlighting enhanced carrier concentration and electronic conductivity of the active region. Furthermore, the geometrical model of NiMnO3 crystals revealed relatively large voids, likely providing channels for the ion intercalation/de-intercalation. The current processing approach is highly adaptable and can be applied to a wide range of material systems for designing highly efficient electrodes for energy-storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dxp完成签到,获得积分10
刚刚
ln发布了新的文献求助10
1秒前
李健应助合适板栗采纳,获得10
1秒前
1秒前
平淡的雁开应助JUAN采纳,获得10
2秒前
2秒前
2秒前
Hello应助魏不不采纳,获得10
3秒前
後知後孓完成签到,获得积分10
4秒前
5秒前
5秒前
周维发布了新的文献求助10
5秒前
6秒前
想毕业完成签到,获得积分10
6秒前
後知後孓发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
狂野谷冬完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
ZexiWu发布了新的文献求助20
9秒前
玖念发布了新的文献求助10
10秒前
想毕业发布了新的文献求助40
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
kingwill应助科研通管家采纳,获得20
10秒前
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
糖异生完成签到,获得积分10
11秒前
传奇3应助科研通管家采纳,获得30
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
lanananan发布了新的文献求助10
11秒前
Wang完成签到,获得积分10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709