接触角
壳聚糖
材料科学
化学工程
润湿
吸附
扫描电子显微镜
抗菌活性
生物相容性
核化学
高分子化学
化学
复合材料
有机化学
生物
细菌
工程类
遗传学
冶金
作者
Kun Wang,Ying Yu,Wei Li,Da Li,Hui Li
标识
DOI:10.1016/j.ijbiomac.2023.123285
摘要
In this study, heparin-like polysaccharides were successfully produced by sulfation of carboxymethylcellulose sodium, then a fully biobased bilayer composed of sulfated carboxymethylcellulose sodium (SCMC) and chitosan (CS) was composited on the surface of Poly (L-lactic acid) (PLA) through layer-by-layer (LBL) assembly for the potential blood-contact application such as bioresorbable vascular scaffold. The preliminary structure and bioactivity of SCMC with different degree of sulfation were investigated, and the SCMC with best performance was selected. The surface chemical compositions, morphologies and wettability of SCMC/CS multilayer-modified PLA films were researched by X-ray photoelectron spectrometer, scanning electron microscopy and water contact angle meter. A series of anticoagulation tests of SCMC/CS multilayer-modified PLA films were performed. In term of (SCMC/CS)15 multilayer-modified PLA film, the protein adsorption and plate adhesion decreased by 44.6 % and 71.5 %, respectively, the activated partial thromboplastin time prolonged by 11.9 times and thrombin time exceed 300 s, the contact activation and hemolysis rate significantly reduced compared with unmodified PLA film. Besides, this modified PLA films performed good cytocompatibility to L929 fibroblast cells, excellent anti-inflammatory and antibacterial abilities. In conclusion, the multifunctional SCMC/CS multilayer-modified PLA films with hemocompatibility, cytocompatibility, anti-inflammatory and antibacterial properties may have promising potential in future clinical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI