Facile Li+ Transport in Interpenetrating O‐ and F‐Containing Polymer Networks for Solid‐State Lithium Batteries

材料科学 阳极 电解质 锂(药物) 聚合物 离子电导率 离解(化学) 化学工程 离子键合 电极 电导率 离子 物理化学 复合材料 有机化学 内分泌学 化学 工程类 医学
作者
Hanh T. T. Nguyen,Dang H. Nguyen,Qincheng Zhang,Van‐Can Nguyen,Yuh‐Lang Lee,Jeng‐Shiung Jan,Hsisheng Teng
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (12) 被引量:11
标识
DOI:10.1002/adfm.202213469
摘要

Abstract Solid polymer electrolytes (SPEs) provide an intimate contact with electrodes and accommodate volume changes in the Li‐anode, making them ideal for all‐solid‐state batteries (ASSBs); however, confined chain swing, poor ion‐complex dissociation, and barricaded Li + ‐transport pathways limit the ionic conductivity of SPEs. This study develops an interpenetrating polymer network electrolyte (IPNE) comprising poly(ethylene oxide)‐ and poly(vinylidene fluoride)‐based networked SPEs (O‐NSPE and F‐NSPE, respectively) and lithium bis(fluorosulfonyl) imide (LiFSI) to address these challenges. The CF 2 /CF 3 segments of the F‐NSPE segregate FSI − to form connected Li + ‐diffusion domains, and COC segments of the O‐NSPE dissociate the complexed ions to expedite Li + transport. The synergy between O‐NSPE and F‐NSPE gives IPNE high ionic conductivity (≈1 mS cm −1 ) and a high Li‐transference number (≈0.7) at 30 °C. FSI − aggregation prevents the formation of a space‐charge zone on the Li‐anode surface to enable uniform Li deposition. In Li||Li cells, the proposed IPNE exhibits an exchange current density exceeding that of liquid electrolytes (LEs). A Li|IPNE|LiFePO 4 ASSB achieves charge–discharge performance superior to that of LE‐based batteries and delivers a high rate of 7 mA cm −2 . Exploiting the synergy between polymer networks to construct speedy Li + ‐transport pathways is a promising approach to the further development of SPEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
忘羡222完成签到,获得积分10
刚刚
专一发布了新的文献求助10
2秒前
跳跃曼文完成签到,获得积分10
3秒前
干将莫邪完成签到,获得积分10
4秒前
SYLH应助exile采纳,获得10
4秒前
小二郎应助魔幻的从梦采纳,获得10
5秒前
6秒前
雪鸽鸽发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
9秒前
科研通AI5应助朱一龙采纳,获得30
10秒前
SharonDu完成签到 ,获得积分10
11秒前
ayin完成签到,获得积分10
11秒前
12秒前
12秒前
啦啦啦完成签到,获得积分10
12秒前
coffee发布了新的文献求助10
13秒前
13秒前
科研混子发布了新的文献求助10
13秒前
咿咿呀呀发布了新的文献求助10
13秒前
酷酷碧发布了新的文献求助10
15秒前
飘逸宛丝完成签到,获得积分10
16秒前
qzaima发布了新的文献求助10
16秒前
米酒完成签到,获得积分10
18秒前
step_stone给step_stone的求助进行了留言
18秒前
乐乐应助ayin采纳,获得10
19秒前
无花果应助hhh采纳,获得10
21秒前
叁壹粑粑完成签到,获得积分10
22秒前
酷酷碧完成签到,获得积分10
22秒前
23秒前
磕盐民工完成签到,获得积分10
24秒前
24秒前
忘羡222发布了新的文献求助20
24秒前
我是老大应助TT采纳,获得10
26秒前
26秒前
26秒前
雪鸽鸽完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824