An Automated Fish Species Classification System Using Improved Alexnet Model

卷积神经网络 计算机科学 人工智能 特征提取 模式识别(心理学) 特征选择 深度学习 特征(语言学) 上下文图像分类 渔业 图像(数学) 生物 语言学 哲学
作者
J.M Jini Mol,S. Albin Jose
标识
DOI:10.1109/iceca55336.2022.10009302
摘要

Due to the extremely dark nature of the sea's inner water and the fish's quick movement, classifying fish species from images obtained from the ocean presents significant challenges. This article describes an automated approach for identifying and classifying fish species using the deep learning method. It benefits marine scientists in various ways, most notably by allowing for the accurate monitoring of fish reproduction, development, and marine changes. AlexNet, a popular deep convolutional neural network model, is employed in this proposed study to classify fish species. This research modifies the traditional alexnet design to improve the accuracy of fish classification. In this proposed AlexNet architecture, five convolutional layers are used for an efficient texture and color feature extraction process. In addition, three fully connected layers are used for feature selection and classification. Finally, the classification efficiency of the proposed fish species classification system has been proven by comparative analysis with the most popular deep learning models (Alexnet, GoogleNet and VGGNet). The overall performance of the proposed deep learning model is 94%, its sensitivity is 95%, and its specificity is 95.5%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
深情安青应助cccc采纳,获得10
1秒前
1秒前
细心擎呢发布了新的文献求助10
2秒前
3秒前
小彭仔完成签到,获得积分10
3秒前
罗咩咩发布了新的文献求助10
5秒前
丘比特应助ninomi采纳,获得10
5秒前
5秒前
蓝天应助聪慧的醉波采纳,获得10
5秒前
6秒前
彭于晏应助霸气的柠檬采纳,获得10
7秒前
大模型应助吴龙采纳,获得10
7秒前
茶米发布了新的文献求助10
8秒前
8秒前
单薄的西装完成签到,获得积分10
9秒前
NexusExplorer应助Wjp采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
shadow完成签到,获得积分10
10秒前
balalal发布了新的文献求助10
10秒前
CodeCraft应助sghsh采纳,获得10
11秒前
CodeCraft应助zd200572采纳,获得10
11秒前
Hello应助Dylan采纳,获得10
11秒前
珊明治完成签到,获得积分10
12秒前
13秒前
ak24765完成签到,获得积分10
13秒前
Lucas应助帝释天I采纳,获得10
14秒前
Linden发布了新的文献求助10
14秒前
15秒前
传奇3应助ling22采纳,获得10
15秒前
风衣拖地完成签到 ,获得积分10
15秒前
冰红粥完成签到,获得积分10
15秒前
15秒前
852应助曾经山柏采纳,获得10
16秒前
可爱的函函应助杜晓倩采纳,获得10
16秒前
所所应助黎其采纳,获得10
16秒前
19秒前
VV2001完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133