Predictive models for predicting the risk of maternal postpartum depression: A systematic review and evaluation

系统回顾 预测建模 检查表 过度拟合 临床心理学 心情 接收机工作特性 心理学 医学 梅德林 机器学习 计算机科学 政治学 人工神经网络 认知心理学 法学
作者
Weijing Qi,Yongjian Wang,Caixia Li,Ke He,Yipeng Wang,Sha Huang,Cong Li,Qing Guo,Jie Hu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:333: 107-120 被引量:7
标识
DOI:10.1016/j.jad.2023.04.026
摘要

Clinical prediction models have been widely used to screen and diagnose postpartum depression (PPD). This study systematically reviews and evaluates the risk of bias and the applicability of PPD prediction models.A systematic search was performed in eight databases from inception to June 1, 2022. The literature was independently screened, and data were extracted by two investigators using the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS). The risk of bias and applicability was assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST).After the screening, 12 studies of PPD risk prediction models were included, with the area under the ROC curve of the models ranging from 0.611 to 0.937. The most-reported predictors of PPD included several aspects, including prenatal mood disorders, endocrine and hormonal influences, psychosocial aspects, the influence of family factors, and somatic illness factors. The applicability of all studies was good. However, there was some bias, mainly due to inadequate outcome events, missing data not appropriately handled, lack of model performance assessment, and overfitting of the models.This systematic review and evaluation indicate that most present PPD prediction models have a high risk of bias during development and validation. Despite some models' predictive solid performance, the models' clinical practice rate is low. Therefore, future research should develop predictive models with excellent performance in all aspects and clinical applicability to better inform maternal medical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
aurora应助7qi采纳,获得10
1秒前
daisy完成签到,获得积分10
2秒前
3秒前
万能图书馆应助凉逗听采纳,获得50
3秒前
4秒前
打打应助WANG采纳,获得10
4秒前
脑洞疼应助77采纳,获得10
5秒前
叶远望发布了新的文献求助10
5秒前
zjjcrystal发布了新的文献求助10
6秒前
6秒前
7秒前
Godlove发布了新的文献求助10
7秒前
8秒前
DY发布了新的文献求助10
9秒前
钢琴海豹完成签到,获得积分10
9秒前
9秒前
Snowychen完成签到,获得积分10
10秒前
10秒前
劲秉应助端庄的萝采纳,获得20
11秒前
高兴星完成签到,获得积分10
11秒前
传奇3应助Godlove采纳,获得10
11秒前
11秒前
windli发布了新的文献求助10
11秒前
WANG完成签到,获得积分20
12秒前
Lucas应助一颗椰子糖耶采纳,获得10
13秒前
情怀应助时尚战斗机采纳,获得10
14秒前
ytli发布了新的文献求助20
14秒前
lllkkk发布了新的文献求助10
15秒前
欧小嘢发布了新的文献求助10
15秒前
sundial发布了新的文献求助10
16秒前
Godlove完成签到,获得积分10
18秒前
百里新梅发布了新的文献求助10
18秒前
lichaoyes完成签到,获得积分10
19秒前
Jasper应助平常的玲采纳,获得10
20秒前
老迟到的羊完成签到 ,获得积分10
20秒前
pony发布了新的文献求助30
21秒前
zjjcrystal完成签到,获得积分20
21秒前
香蕉觅云应助丽虹采纳,获得10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735644
求助须知:如何正确求助?哪些是违规求助? 3279426
关于积分的说明 10015198
捐赠科研通 2996127
什么是DOI,文献DOI怎么找? 1643895
邀请新用户注册赠送积分活动 781551
科研通“疑难数据库(出版商)”最低求助积分说明 749423