Predictive models for predicting the risk of maternal postpartum depression: A systematic review and evaluation

系统回顾 预测建模 检查表 过度拟合 临床心理学 心情 接收机工作特性 心理学 医学 梅德林 机器学习 计算机科学 政治学 人工神经网络 法学 认知心理学
作者
Weijing Qi,Yongjian Wang,Caixia Li,Ke He,Yipeng Wang,Sha Huang,Cong Li,Qing Guo,Jie Hu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:333: 107-120 被引量:17
标识
DOI:10.1016/j.jad.2023.04.026
摘要

Clinical prediction models have been widely used to screen and diagnose postpartum depression (PPD). This study systematically reviews and evaluates the risk of bias and the applicability of PPD prediction models.A systematic search was performed in eight databases from inception to June 1, 2022. The literature was independently screened, and data were extracted by two investigators using the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS). The risk of bias and applicability was assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST).After the screening, 12 studies of PPD risk prediction models were included, with the area under the ROC curve of the models ranging from 0.611 to 0.937. The most-reported predictors of PPD included several aspects, including prenatal mood disorders, endocrine and hormonal influences, psychosocial aspects, the influence of family factors, and somatic illness factors. The applicability of all studies was good. However, there was some bias, mainly due to inadequate outcome events, missing data not appropriately handled, lack of model performance assessment, and overfitting of the models.This systematic review and evaluation indicate that most present PPD prediction models have a high risk of bias during development and validation. Despite some models' predictive solid performance, the models' clinical practice rate is low. Therefore, future research should develop predictive models with excellent performance in all aspects and clinical applicability to better inform maternal medical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhj完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
小z发布了新的文献求助10
5秒前
小天草水母完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
村村完成签到,获得积分10
6秒前
6秒前
科研通AI6.1应助小王采纳,获得10
7秒前
sht1发布了新的文献求助10
8秒前
9秒前
10秒前
希望天下0贩的0应助肉卷采纳,获得10
11秒前
Candy2024完成签到 ,获得积分10
12秒前
QIEZI发布了新的文献求助10
12秒前
12秒前
ableyy完成签到 ,获得积分10
13秒前
14秒前
盼坨完成签到,获得积分20
14秒前
15秒前
王凡完成签到 ,获得积分10
17秒前
17秒前
SciGPT应助小z采纳,获得10
17秒前
六六绿完成签到,获得积分10
19秒前
Wei发布了新的文献求助10
20秒前
科研通AI6.1应助zxy125采纳,获得10
20秒前
20秒前
ASHUN完成签到,获得积分10
20秒前
leezhen发布了新的文献求助10
20秒前
Redinn完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
叮叮当当发布了新的文献求助10
22秒前
盼坨发布了新的文献求助10
22秒前
22秒前
明朗完成签到,获得积分20
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771499
求助须知:如何正确求助?哪些是违规求助? 5591993
关于积分的说明 15427668
捐赠科研通 4904815
什么是DOI,文献DOI怎么找? 2639018
邀请新用户注册赠送积分活动 1586798
关于科研通互助平台的介绍 1541797