Predictive models for predicting the risk of maternal postpartum depression: A systematic review and evaluation

系统回顾 预测建模 检查表 过度拟合 临床心理学 心情 接收机工作特性 心理学 医学 梅德林 机器学习 计算机科学 政治学 人工神经网络 认知心理学 法学
作者
Weijing Qi,Yong‐Jian Wang,Caixia Li,Ke He,Yipeng Wang,Sha Huang,Cong Li,Qing Guo,Jie Hu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:333: 107-120 被引量:4
标识
DOI:10.1016/j.jad.2023.04.026
摘要

Clinical prediction models have been widely used to screen and diagnose postpartum depression (PPD). This study systematically reviews and evaluates the risk of bias and the applicability of PPD prediction models.A systematic search was performed in eight databases from inception to June 1, 2022. The literature was independently screened, and data were extracted by two investigators using the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS). The risk of bias and applicability was assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST).After the screening, 12 studies of PPD risk prediction models were included, with the area under the ROC curve of the models ranging from 0.611 to 0.937. The most-reported predictors of PPD included several aspects, including prenatal mood disorders, endocrine and hormonal influences, psychosocial aspects, the influence of family factors, and somatic illness factors. The applicability of all studies was good. However, there was some bias, mainly due to inadequate outcome events, missing data not appropriately handled, lack of model performance assessment, and overfitting of the models.This systematic review and evaluation indicate that most present PPD prediction models have a high risk of bias during development and validation. Despite some models' predictive solid performance, the models' clinical practice rate is low. Therefore, future research should develop predictive models with excellent performance in all aspects and clinical applicability to better inform maternal medical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想睡觉的小笼包完成签到 ,获得积分10
1秒前
诚心代芙完成签到 ,获得积分10
1秒前
Lyrics发布了新的文献求助10
2秒前
爱笑完成签到,获得积分10
2秒前
拉拉发布了新的文献求助10
3秒前
左一酱完成签到 ,获得积分10
3秒前
快乐的蓝完成签到 ,获得积分10
4秒前
4秒前
kk发布了新的文献求助10
4秒前
zz完成签到,获得积分10
6秒前
高高完成签到 ,获得积分10
7秒前
活力寒梅发布了新的文献求助10
7秒前
hkh发布了新的文献求助10
8秒前
Trista完成签到,获得积分10
10秒前
司藤完成签到 ,获得积分10
10秒前
拉拉完成签到,获得积分10
14秒前
陈居居完成签到,获得积分10
14秒前
AU完成签到,获得积分10
15秒前
1278day完成签到,获得积分10
17秒前
liuxshan完成签到,获得积分10
19秒前
活力的泥猴桃完成签到 ,获得积分10
19秒前
苯二氮卓完成签到,获得积分10
19秒前
wangwang完成签到,获得积分10
19秒前
蛋壳柯发布了新的文献求助10
20秒前
白云找酒完成签到,获得积分10
21秒前
hkh完成签到,获得积分10
23秒前
舒适的石头完成签到,获得积分10
23秒前
ccm应助池暮江吟春采纳,获得10
24秒前
Raisin完成签到 ,获得积分10
26秒前
扶恩完成签到,获得积分10
26秒前
shiney完成签到 ,获得积分0
28秒前
喻亦寒完成签到,获得积分10
28秒前
ludwig完成签到,获得积分10
28秒前
zhang005on完成签到,获得积分10
29秒前
陶醉的小海豚完成签到,获得积分10
29秒前
不知道完成签到,获得积分10
30秒前
所所应助eyu采纳,获得10
37秒前
吱吱组织杂质完成签到,获得积分10
38秒前
licheng完成签到,获得积分10
39秒前
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784551
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011