亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive models for predicting the risk of maternal postpartum depression: A systematic review and evaluation

系统回顾 预测建模 检查表 过度拟合 临床心理学 心情 接收机工作特性 心理学 医学 梅德林 机器学习 计算机科学 政治学 人工神经网络 法学 认知心理学
作者
Weijing Qi,Yongjian Wang,Caixia Li,Ke He,Yipeng Wang,Sha Huang,Cong Li,Qing Guo,Jie Hu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:333: 107-120 被引量:13
标识
DOI:10.1016/j.jad.2023.04.026
摘要

Clinical prediction models have been widely used to screen and diagnose postpartum depression (PPD). This study systematically reviews and evaluates the risk of bias and the applicability of PPD prediction models.A systematic search was performed in eight databases from inception to June 1, 2022. The literature was independently screened, and data were extracted by two investigators using the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS). The risk of bias and applicability was assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST).After the screening, 12 studies of PPD risk prediction models were included, with the area under the ROC curve of the models ranging from 0.611 to 0.937. The most-reported predictors of PPD included several aspects, including prenatal mood disorders, endocrine and hormonal influences, psychosocial aspects, the influence of family factors, and somatic illness factors. The applicability of all studies was good. However, there was some bias, mainly due to inadequate outcome events, missing data not appropriately handled, lack of model performance assessment, and overfitting of the models.This systematic review and evaluation indicate that most present PPD prediction models have a high risk of bias during development and validation. Despite some models' predictive solid performance, the models' clinical practice rate is low. Therefore, future research should develop predictive models with excellent performance in all aspects and clinical applicability to better inform maternal medical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Criminology34应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
22秒前
lixuebin完成签到 ,获得积分10
53秒前
浮游应助学术悍匪采纳,获得10
59秒前
1分钟前
SciGPT应助xuan采纳,获得10
1分钟前
1分钟前
AST发布了新的文献求助10
1分钟前
1分钟前
xuan发布了新的文献求助10
1分钟前
AST完成签到,获得积分10
1分钟前
上官若男应助Zert采纳,获得10
1分钟前
1分钟前
Zert发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
大个应助xuan采纳,获得10
2分钟前
2分钟前
丘比特应助鱼粥1111采纳,获得10
2分钟前
xuan发布了新的文献求助10
2分钟前
酸奶冻完成签到,获得积分10
2分钟前
ywy发布了新的文献求助10
2分钟前
上官若男应助Zert采纳,获得10
3分钟前
3分钟前
3分钟前
Zert发布了新的文献求助10
3分钟前
学术悍匪发布了新的文献求助10
3分钟前
鱼粥1111发布了新的文献求助10
3分钟前
hugeyoung完成签到,获得积分10
4分钟前
4分钟前
puuuunido完成签到 ,获得积分10
4分钟前
5分钟前
生动项链发布了新的文献求助10
5分钟前
Doctor.TANG完成签到 ,获得积分10
5分钟前
小蘑菇应助xuan采纳,获得10
5分钟前
5分钟前
xuan发布了新的文献求助10
6分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346307
求助须知:如何正确求助?哪些是违规求助? 4480984
关于积分的说明 13947084
捐赠科研通 4378742
什么是DOI,文献DOI怎么找? 2406045
邀请新用户注册赠送积分活动 1398580
关于科研通互助平台的介绍 1371291