Predictive models for predicting the risk of maternal postpartum depression: A systematic review and evaluation

系统回顾 预测建模 检查表 过度拟合 临床心理学 心情 接收机工作特性 心理学 医学 梅德林 机器学习 计算机科学 政治学 人工神经网络 法学 认知心理学
作者
Weijing Qi,Yongjian Wang,Caixia Li,Ke He,Yipeng Wang,Sha Huang,Cong Li,Qing Guo,Jie Hu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:333: 107-120 被引量:17
标识
DOI:10.1016/j.jad.2023.04.026
摘要

Clinical prediction models have been widely used to screen and diagnose postpartum depression (PPD). This study systematically reviews and evaluates the risk of bias and the applicability of PPD prediction models.A systematic search was performed in eight databases from inception to June 1, 2022. The literature was independently screened, and data were extracted by two investigators using the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS). The risk of bias and applicability was assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST).After the screening, 12 studies of PPD risk prediction models were included, with the area under the ROC curve of the models ranging from 0.611 to 0.937. The most-reported predictors of PPD included several aspects, including prenatal mood disorders, endocrine and hormonal influences, psychosocial aspects, the influence of family factors, and somatic illness factors. The applicability of all studies was good. However, there was some bias, mainly due to inadequate outcome events, missing data not appropriately handled, lack of model performance assessment, and overfitting of the models.This systematic review and evaluation indicate that most present PPD prediction models have a high risk of bias during development and validation. Despite some models' predictive solid performance, the models' clinical practice rate is low. Therefore, future research should develop predictive models with excellent performance in all aspects and clinical applicability to better inform maternal medical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单小懒虫完成签到 ,获得积分10
2秒前
2秒前
2秒前
不必要再讨论适合与否完成签到,获得积分0
3秒前
niNe3YUE应助喷香大蒜瓣采纳,获得10
3秒前
zhendezy发布了新的文献求助10
4秒前
4秒前
4秒前
张龙完成签到,获得积分20
5秒前
孙文杰发布了新的文献求助10
5秒前
武雨寒发布了新的文献求助10
6秒前
weizhao发布了新的文献求助10
6秒前
7秒前
燕小丙完成签到,获得积分10
7秒前
经纲完成签到 ,获得积分0
9秒前
淡淡的雪发布了新的文献求助10
9秒前
10秒前
Lucas应助weizhao采纳,获得10
10秒前
方汀关注了科研通微信公众号
10秒前
LmY大帅比发布了新的文献求助10
10秒前
xiaobai123456发布了新的文献求助10
11秒前
11秒前
尹沐完成签到 ,获得积分10
11秒前
觉悟111完成签到,获得积分10
11秒前
蒸馏水应助喷香大蒜瓣采纳,获得10
12秒前
zxh完成签到,获得积分10
12秒前
费慕青发布了新的文献求助10
13秒前
丘比特应助帅气的宽采纳,获得10
13秒前
15秒前
yunan完成签到,获得积分10
16秒前
16秒前
zzz完成签到,获得积分10
16秒前
weizhao完成签到,获得积分20
16秒前
冷傲的紫寒完成签到 ,获得积分10
16秒前
姜姜姜姜发布了新的文献求助10
17秒前
失眠初夏完成签到,获得积分10
17秒前
儒雅的善愁完成签到,获得积分10
18秒前
黑猫发布了新的文献求助10
18秒前
19秒前
wheat完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600254
求助须知:如何正确求助?哪些是违规求助? 4685964
关于积分的说明 14840835
捐赠科研通 4676051
什么是DOI,文献DOI怎么找? 2538627
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167