超级电容器
钴
兴奋剂
电导率
离子
功率密度
材料科学
化学工程
碳纤维
纳米技术
化学
冶金
光电子学
功率(物理)
电容
复合材料
复合数
物理化学
工程类
热力学
电极
物理
有机化学
作者
Zeyu Hao,Chao Jiang,Zijin Xu,Zhengyan Du,Jian Xu,Wei Shi,Zeshuo Meng,Shansheng Yu,Hongwei Tian
标识
DOI:10.1016/j.jcis.2023.04.061
摘要
Cobalt hydroxylfluoride (CoOHF) is an emerging supercapacitor material. However, it remains highly challenging to effectively enhance the performance of CoOHF, which is limited by its poor electron and ion transport ability. In this study, the intrinsic structure of CoOHF was optimized through Fe doping (CoOHF-xFe, where x represents the Fe/Co feeding ratio). As indicated by the experimental and theoretical calculation results, the incorporation of Fe effectively enhances the intrinsic conductivity of CoOHF and optimizes its surface ion adsorption capacity. Moreover, since the radius of Fe is slightly larger than that of Co, the space between the crystal planes of CoOHF increases to a certain extent, and the ability to store ions is consequently enhanced. The optimized CoOHF-0.06Fe sample exhibits the maximum specific capacitance (385.8 F g-1). The asymmetric supercapacitor with activated carbon achieves a high energy density of 37.2 Wh kg-1 at a power density of 1600 W kg-1, and a full hydrolysis pool is successfully driven by the device, indicating great application potential. This study lays a solid basis for the application of hydroxylfluoride to a novel generation of supercapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI