Feature extraction of natural gas leakage for an intelligent warning model: A data-driven analysis and modeling

沼气 天然气 泄漏(经济) 工程类 环境科学 预警系统 废物管理 环境工程 经济 宏观经济学 航空航天工程
作者
Zhengshe Kang,Xinming Qian,Yuanzhi Li,Longfei Hou,Zhengrun Huang,Weike Duanmu,Mengqi Yuan
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:174: 574-584 被引量:4
标识
DOI:10.1016/j.psep.2023.04.026
摘要

Online monitoring of natural gas in urban underground space has proven to be an effective method for resolving minor leakage and explosion accidents in urban low-pressure natural gas pipelines. However, the harsh environment of urban underground space is often accompanied by the generation of biogas, whose components are more similar to those of natural gas, causing great disturbance to early warning of natural gas leakage. This study correlates the biogas generation principle and its transport law with human activities and environmental changes, analyzes and extracts the characteristics of the natural-gas-biogas CH4 concentration using big data analysis technology, and establishes a natural-gas-biogas sample database. The imbalance between positive and negative samples in the database is addressed by two oversampling techniques. The models trained by two different machine learning algorithms were then evaluated. The results of the study are summarized as follows: (1) There are daily and annual cycles in the CH4 concentration in biogas. The daily trend of biogas in the same manhole is similar, and the biogas in different manholes shows various changes periodically with human activities. Biogas early warnings often occur during the high temperature season (April-September). (2) Features such as period, temperature of alarm, and average concentration over 24 h are positive for improving model accuracy. (3) The combined model of XGBoost and the borderlineSMOTE algorithm has an f-score of 72.7 %, an accuracy of 71.2 %, and a recall of 73.4 %. Compared with the traditional manual classification method, the model proposed in this study can identify natural gas and biogas in a more real-time and accurate manner, reduce the workload of on-site confirmation, and effectively shorten the emergency response time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美罗培南完成签到,获得积分10
刚刚
1秒前
hykkk完成签到,获得积分10
1秒前
TING完成签到,获得积分10
2秒前
脑洞疼应助soda采纳,获得10
4秒前
七七完成签到,获得积分10
6秒前
斯文败类应助weige采纳,获得10
8秒前
9秒前
9秒前
oceanao应助lilili采纳,获得10
10秒前
独特筝完成签到,获得积分10
11秒前
科研通AI2S应助专一的傲白采纳,获得10
12秒前
CodeCraft应助李鱼丸采纳,获得100
12秒前
Owen应助Ade采纳,获得10
13秒前
wang发布了新的文献求助10
13秒前
14秒前
16秒前
章鱼完成签到,获得积分10
16秒前
19秒前
鲤鱼萧发布了新的文献求助10
19秒前
科研通AI2S应助wang采纳,获得10
21秒前
Linden_bd完成签到 ,获得积分10
21秒前
白沙湾完成签到,获得积分10
21秒前
LSH完成签到 ,获得积分10
25秒前
研ZZ发布了新的文献求助10
26秒前
27秒前
28秒前
29秒前
29秒前
不安青牛应助665采纳,获得10
31秒前
李健应助科研通管家采纳,获得10
32秒前
32秒前
温暖南莲应助科研通管家采纳,获得20
32秒前
爆米花应助科研通管家采纳,获得10
32秒前
32秒前
sumu完成签到,获得积分10
32秒前
soda发布了新的文献求助10
32秒前
33秒前
LMH发布了新的文献求助10
33秒前
34秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158263
求助须知:如何正确求助?哪些是违规求助? 2809613
关于积分的说明 7882615
捐赠科研通 2468106
什么是DOI,文献DOI怎么找? 1313874
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956