Feature extraction of natural gas leakage for an intelligent warning model: A data-driven analysis and modeling

沼气 天然气 泄漏(经济) 工程类 环境科学 预警系统 废物管理 环境工程 宏观经济学 航空航天工程 经济
作者
Zhengshe Kang,Xinming Qian,Yuanzhi Li,Longfei Hou,Zhengrun Huang,Weike Duanmu,Mengqi Yuan
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:174: 574-584 被引量:8
标识
DOI:10.1016/j.psep.2023.04.026
摘要

Online monitoring of natural gas in urban underground space has proven to be an effective method for resolving minor leakage and explosion accidents in urban low-pressure natural gas pipelines. However, the harsh environment of urban underground space is often accompanied by the generation of biogas, whose components are more similar to those of natural gas, causing great disturbance to early warning of natural gas leakage. This study correlates the biogas generation principle and its transport law with human activities and environmental changes, analyzes and extracts the characteristics of the natural-gas-biogas CH4 concentration using big data analysis technology, and establishes a natural-gas-biogas sample database. The imbalance between positive and negative samples in the database is addressed by two oversampling techniques. The models trained by two different machine learning algorithms were then evaluated. The results of the study are summarized as follows: (1) There are daily and annual cycles in the CH4 concentration in biogas. The daily trend of biogas in the same manhole is similar, and the biogas in different manholes shows various changes periodically with human activities. Biogas early warnings often occur during the high temperature season (April-September). (2) Features such as period, temperature of alarm, and average concentration over 24 h are positive for improving model accuracy. (3) The combined model of XGBoost and the borderlineSMOTE algorithm has an f-score of 72.7 %, an accuracy of 71.2 %, and a recall of 73.4 %. Compared with the traditional manual classification method, the model proposed in this study can identify natural gas and biogas in a more real-time and accurate manner, reduce the workload of on-site confirmation, and effectively shorten the emergency response time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助嘀咕有无采纳,获得10
刚刚
高贵路灯完成签到,获得积分10
1秒前
3秒前
温乘云完成签到,获得积分10
4秒前
qing完成签到 ,获得积分20
5秒前
儒雅冰岚发布了新的文献求助10
5秒前
OpalLi发布了新的文献求助10
6秒前
hahajiang完成签到,获得积分10
6秒前
zjy发布了新的文献求助10
6秒前
火星上的如松完成签到,获得积分10
7秒前
晓布衣完成签到 ,获得积分10
7秒前
浮游应助年轻秀采纳,获得10
8秒前
8秒前
浮游应助儒雅冰岚采纳,获得10
8秒前
9秒前
丘比特应助唠叨的冥王星采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
Criminology34应助wan采纳,获得10
10秒前
太阳alright完成签到,获得积分10
11秒前
11秒前
Ella发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
kids发布了新的文献求助10
14秒前
jiyuan发布了新的文献求助10
14秒前
sun发布了新的文献求助10
14秒前
15秒前
瘦瘦绮发布了新的文献求助10
16秒前
浮游应助OpalLi采纳,获得30
17秒前
18秒前
小太阳哈哈完成签到 ,获得积分10
19秒前
狼道发布了新的文献求助100
19秒前
工诩发布了新的文献求助10
20秒前
Zhang完成签到,获得积分20
21秒前
新鲜楠瓜皮完成签到,获得积分10
21秒前
舒萼发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908239
求助须知:如何正确求助?哪些是违规求助? 4184921
关于积分的说明 12996146
捐赠科研通 3951616
什么是DOI,文献DOI怎么找? 2167074
邀请新用户注册赠送积分活动 1185545
关于科研通互助平台的介绍 1092127