Feature extraction of natural gas leakage for an intelligent warning model: A data-driven analysis and modeling

沼气 天然气 泄漏(经济) 工程类 环境科学 预警系统 废物管理 环境工程 宏观经济学 航空航天工程 经济
作者
Zhengshe Kang,Xinming Qian,Yuanzhi Li,Longfei Hou,Zhengrun Huang,Weike Duanmu,Mengqi Yuan
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:174: 574-584 被引量:8
标识
DOI:10.1016/j.psep.2023.04.026
摘要

Online monitoring of natural gas in urban underground space has proven to be an effective method for resolving minor leakage and explosion accidents in urban low-pressure natural gas pipelines. However, the harsh environment of urban underground space is often accompanied by the generation of biogas, whose components are more similar to those of natural gas, causing great disturbance to early warning of natural gas leakage. This study correlates the biogas generation principle and its transport law with human activities and environmental changes, analyzes and extracts the characteristics of the natural-gas-biogas CH4 concentration using big data analysis technology, and establishes a natural-gas-biogas sample database. The imbalance between positive and negative samples in the database is addressed by two oversampling techniques. The models trained by two different machine learning algorithms were then evaluated. The results of the study are summarized as follows: (1) There are daily and annual cycles in the CH4 concentration in biogas. The daily trend of biogas in the same manhole is similar, and the biogas in different manholes shows various changes periodically with human activities. Biogas early warnings often occur during the high temperature season (April-September). (2) Features such as period, temperature of alarm, and average concentration over 24 h are positive for improving model accuracy. (3) The combined model of XGBoost and the borderlineSMOTE algorithm has an f-score of 72.7 %, an accuracy of 71.2 %, and a recall of 73.4 %. Compared with the traditional manual classification method, the model proposed in this study can identify natural gas and biogas in a more real-time and accurate manner, reduce the workload of on-site confirmation, and effectively shorten the emergency response time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Amanda发布了新的文献求助10
刚刚
bkagyin应助wang采纳,获得10
刚刚
香蕉觅云应助小小苏荷采纳,获得10
刚刚
善学以致用应助小小苏荷采纳,获得10
刚刚
NexusExplorer应助小小苏荷采纳,获得10
刚刚
小高发布了新的文献求助30
1秒前
甜甜圈发布了新的文献求助10
1秒前
1秒前
啦啦完成签到,获得积分10
1秒前
英姑应助啦啦啦采纳,获得10
1秒前
马嘉祺超绝鸡肉线完成签到,获得积分10
3秒前
霸气鹏飞完成签到,获得积分20
4秒前
5秒前
5秒前
Wn完成签到,获得积分10
5秒前
6秒前
6秒前
Zhao Jiaxu发布了新的文献求助10
6秒前
6秒前
Theprisoners举报wan求助涉嫌违规
7秒前
WHH驳回了keyun应助
8秒前
时安完成签到 ,获得积分10
9秒前
田様应助程栀采纳,获得10
9秒前
9秒前
10秒前
10秒前
孙军涛发布了新的文献求助10
11秒前
欢呼鱼发布了新的文献求助10
11秒前
Teko发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
Hoooo...发布了新的文献求助10
13秒前
奔放的老青年完成签到,获得积分10
14秒前
李老头完成签到,获得积分10
14秒前
apollo2002发布了新的文献求助10
14秒前
研友_VZG7GZ应助123采纳,获得10
14秒前
北落师门完成签到,获得积分10
14秒前
15秒前
科研通AI2S应助LWJ采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992562
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262757
捐赠科研通 3273163
什么是DOI,文献DOI怎么找? 1805959
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809513