化学
表面等离子共振
葡萄糖氧化酶
催化作用
氧气
肿瘤微环境
过氧化氢酶
肿瘤缺氧
癌细胞
生物物理学
氧化应激
纳米技术
癌症
生物化学
生物传感器
纳米颗粒
材料科学
有机化学
放射治疗
生物
医学
内科学
作者
Yuqing Rao,Guopeng Xu,Zhihua Zhang,Weijie Wang,Chengmei Zhang,Mingwen Zhao,Yuanyuan Qu,Weifeng Li,Min Ji,Yanguo Liu,Yongqiang Li
标识
DOI:10.1016/j.cej.2023.142961
摘要
Hypoxia increases patient treatment resistance and favors cancer progression. Nanozymes have received unprecedented attention in alleviating hypoxia via catalase (CAT)-mimicking catalytic reaction. However, the oxygen production capability of CAT-like nanozymes undergoes the deficiency and even absolute loss in acidic tumor microenvironment. Herein, we propose a doping-localized surface plasmon resonance (LSPR) coupling strategy to shatter the acidic pH limitation and reinforce the catalytic activity of CAT-like nanozyme for oxygen-dominated synergistic cancer therapy. Platinum-doped plasmonic gold nanostar modified with glucose oxidase (Pt-AuNS-GOx) is constructed as a proof-of-concept. Density functional theory calculations reveal the *O-assisted and *OH-assisted CAT-like reaction paths in Pt-AuNS-GOx, and demonstrate that Pt doping-induced energy barrier reduction accounts for the oxygen generation in acidity. Furthermore, the CAT-like reaction kinetics of Pt-AuNS-GOx can be significantly enhanced upon plasmon irradiation resulted from the excited hot electrons and local heating accompanied with LSPR decay. Such outstanding acidic pH-preferential oxygen generation capability of Pt-AuNS-GOx significantly boosts the efficiency of synergistic tumor aerobic therapeutics of glutathione oxidation-medicated oxidative stress and GOx-activated starvation in vitro. Remarkably, Pt-AuNS-GOx substantially reverses the hypoxic microenvironment of tumor tissue, and enables greatly accelerated apoptosis and suppressed metastasis of cancer in vivo, possessing conspicuous therapeutic efficiency. The proposed doping-LSPR coupling strategy offers a powerful modality to modulate the restricted reaction pH of CAT-like nanozymes, and provides a paradigm shift for hypoxia alleviation-boosted cancer synergistic treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI