已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network

断层(地质) 计算机科学 发电机(电路理论) 鉴别器 功率(物理) 信号(编程语言) 可靠性(半导体) 模式(计算机接口) 模式识别(心理学) 人工智能 控制理论(社会学) 数据挖掘 控制(管理) 电信 操作系统 物理 地质学 探测器 地震学 程序设计语言 量子力学
作者
Quan Sun,Fei Peng,Xianghai Yu,Hongsheng Li
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:237: 109360-109360 被引量:21
标识
DOI:10.1016/j.ress.2023.109360
摘要

With the rapid development of new energy vehicles, the brushless DC motor (BLDCM) drive system's reliability and safety have attracted extensive attention. The three-phase full-bridge inverter (TFI) of the BLDCM drive system has a high fault occurrence rate under actual working conditions. It is difficult to identify the fault directly, which leads to imbalanced fault datasets. In addition, it is challenging to obtain fault samples directly, which increases the difficulty of fault diagnosis. In response to these problems, a data augmentation method based on Wasserstein distance and auxiliary classification generative adversarial network (WAC-GAN) for TFI fault diagnosis has been proposed. First, based on the Auxiliary Classification Generative Adversarial Network (ACGAN), one-dimensional convolutions are constructed to replace two-dimensional convolutions for the characteristics of a three-phase current signal to improve the extraction efficiency of signal features. Then, the Wasserstein distance is introduced to improve the model's objective function. Based on the principle of the mutual game between the generator and discriminator, the generator can mine the sample distribution characteristics from few fault mode samples and generate numerous fault samples of specific categories to accomplish the purpose of data augmentation. The experimental results show that the fault diagnosis accuracy of the WAC-GAN model under different datasets and different fault modes can achieve satisfactory fault recognition performance. Compared with other data augmentation methods, the effectiveness and superiority of the proposed method has been verified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
西安浴日光能赵炜完成签到,获得积分10
刚刚
李千澈完成签到,获得积分10
1秒前
1秒前
在水一方发布了新的文献求助10
3秒前
zj发布了新的文献求助10
3秒前
4秒前
5秒前
周周完成签到,获得积分10
5秒前
胖豆发布了新的文献求助10
5秒前
迅速煎蛋发布了新的文献求助10
6秒前
何必在乎发布了新的文献求助10
6秒前
线条完成签到 ,获得积分10
8秒前
8秒前
陶醉凝丝发布了新的文献求助10
11秒前
AhhHuang应助wvvvvx采纳,获得10
12秒前
Jenny完成签到,获得积分10
12秒前
迅速煎蛋完成签到,获得积分10
12秒前
共享精神应助tjzbw采纳,获得10
15秒前
16秒前
宴究生完成签到,获得积分10
18秒前
Jasper应助百川采纳,获得10
18秒前
乐乐应助So今天吃啥采纳,获得10
21秒前
滚滚发布了新的文献求助10
21秒前
21秒前
Jasper应助zj采纳,获得10
25秒前
kk发布了新的文献求助10
26秒前
26秒前
lr关闭了lr文献求助
27秒前
ABS四星发布了新的文献求助10
31秒前
35秒前
共享精神应助读研好难采纳,获得10
35秒前
wanci应助欣慰的乌冬面采纳,获得10
35秒前
讨厌的十九岁完成签到,获得积分10
36秒前
Xiang应助wangly采纳,获得10
37秒前
李健的小迷弟应助ABS四星采纳,获得10
37秒前
大模型应助土豆泥泥采纳,获得10
39秒前
Ava应助羊羊吃芋圆采纳,获得10
42秒前
STH9527关注了科研通微信公众号
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680664
求助须知:如何正确求助?哪些是违规求助? 5000848
关于积分的说明 15173759
捐赠科研通 4840497
什么是DOI,文献DOI怎么找? 2594151
邀请新用户注册赠送积分活动 1547214
关于科研通互助平台的介绍 1505173