Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network

断层(地质) 计算机科学 发电机(电路理论) 鉴别器 功率(物理) 信号(编程语言) 可靠性(半导体) 模式(计算机接口) 模式识别(心理学) 人工智能 控制理论(社会学) 数据挖掘 控制(管理) 电信 物理 量子力学 地震学 地质学 探测器 程序设计语言 操作系统
作者
Quan Sun,Fei Peng,Xianghai Yu,Hongsheng Li
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:237: 109360-109360 被引量:21
标识
DOI:10.1016/j.ress.2023.109360
摘要

With the rapid development of new energy vehicles, the brushless DC motor (BLDCM) drive system's reliability and safety have attracted extensive attention. The three-phase full-bridge inverter (TFI) of the BLDCM drive system has a high fault occurrence rate under actual working conditions. It is difficult to identify the fault directly, which leads to imbalanced fault datasets. In addition, it is challenging to obtain fault samples directly, which increases the difficulty of fault diagnosis. In response to these problems, a data augmentation method based on Wasserstein distance and auxiliary classification generative adversarial network (WAC-GAN) for TFI fault diagnosis has been proposed. First, based on the Auxiliary Classification Generative Adversarial Network (ACGAN), one-dimensional convolutions are constructed to replace two-dimensional convolutions for the characteristics of a three-phase current signal to improve the extraction efficiency of signal features. Then, the Wasserstein distance is introduced to improve the model's objective function. Based on the principle of the mutual game between the generator and discriminator, the generator can mine the sample distribution characteristics from few fault mode samples and generate numerous fault samples of specific categories to accomplish the purpose of data augmentation. The experimental results show that the fault diagnosis accuracy of the WAC-GAN model under different datasets and different fault modes can achieve satisfactory fault recognition performance. Compared with other data augmentation methods, the effectiveness and superiority of the proposed method has been verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GRG完成签到 ,获得积分10
刚刚
无花果应助淼淼之锋采纳,获得10
1秒前
2秒前
王灿灿发布了新的文献求助10
2秒前
如意的尔蝶完成签到,获得积分10
2秒前
3秒前
李健的小迷弟应助luoshikun采纳,获得10
3秒前
小马甲应助笃定采纳,获得10
3秒前
LCX发布了新的文献求助10
3秒前
tcl1998完成签到,获得积分10
3秒前
ableyy完成签到,获得积分10
3秒前
共享精神应助Fxxkme采纳,获得10
4秒前
青与绿发布了新的文献求助10
5秒前
lucifer完成签到,获得积分10
5秒前
宁学者完成签到,获得积分10
6秒前
6秒前
mushanes发布了新的文献求助10
7秒前
Kinsuo发布了新的文献求助10
7秒前
洪艳完成签到,获得积分10
9秒前
曙光完成签到,获得积分10
9秒前
10秒前
CodeCraft应助标致的问晴采纳,获得10
11秒前
Leonardi应助咿呀咿呀哟采纳,获得200
11秒前
共享精神应助儒雅的柠檬采纳,获得10
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
moxin发布了新的文献求助10
14秒前
xuxu发布了新的文献求助10
14秒前
Kinsuo完成签到,获得积分10
14秒前
yhx完成签到,获得积分10
14秒前
李健应助洛神之心1124采纳,获得10
15秒前
15秒前
完美世界应助西北望采纳,获得10
16秒前
16秒前
zsy完成签到,获得积分10
18秒前
李李子发布了新的文献求助10
19秒前
19秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Colloidal Synthesis of Plasmonic Nanometals 500
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587