Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network

断层(地质) 计算机科学 发电机(电路理论) 鉴别器 功率(物理) 信号(编程语言) 可靠性(半导体) 模式(计算机接口) 模式识别(心理学) 人工智能 控制理论(社会学) 数据挖掘 控制(管理) 电信 物理 量子力学 地震学 地质学 探测器 程序设计语言 操作系统
作者
Quan Sun,Fei Peng,Xianghai Yu,Hongsheng Li
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:237: 109360-109360 被引量:21
标识
DOI:10.1016/j.ress.2023.109360
摘要

With the rapid development of new energy vehicles, the brushless DC motor (BLDCM) drive system's reliability and safety have attracted extensive attention. The three-phase full-bridge inverter (TFI) of the BLDCM drive system has a high fault occurrence rate under actual working conditions. It is difficult to identify the fault directly, which leads to imbalanced fault datasets. In addition, it is challenging to obtain fault samples directly, which increases the difficulty of fault diagnosis. In response to these problems, a data augmentation method based on Wasserstein distance and auxiliary classification generative adversarial network (WAC-GAN) for TFI fault diagnosis has been proposed. First, based on the Auxiliary Classification Generative Adversarial Network (ACGAN), one-dimensional convolutions are constructed to replace two-dimensional convolutions for the characteristics of a three-phase current signal to improve the extraction efficiency of signal features. Then, the Wasserstein distance is introduced to improve the model's objective function. Based on the principle of the mutual game between the generator and discriminator, the generator can mine the sample distribution characteristics from few fault mode samples and generate numerous fault samples of specific categories to accomplish the purpose of data augmentation. The experimental results show that the fault diagnosis accuracy of the WAC-GAN model under different datasets and different fault modes can achieve satisfactory fault recognition performance. Compared with other data augmentation methods, the effectiveness and superiority of the proposed method has been verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111chen发布了新的文献求助30
刚刚
研友_VZG7GZ应助像风一样采纳,获得10
刚刚
1秒前
木木发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
YumiPg完成签到,获得积分10
6秒前
7秒前
马麻薯完成签到,获得积分10
9秒前
王十七发布了新的文献求助10
10秒前
Allen完成签到,获得积分10
11秒前
12秒前
ikun0000发布了新的文献求助30
12秒前
13秒前
16秒前
科研鸟发布了新的文献求助10
16秒前
112233445566完成签到,获得积分20
18秒前
18秒前
18秒前
干饭大王应助budingman采纳,获得20
19秒前
科研通AI5应助郴郴采纳,获得10
21秒前
像风一样发布了新的文献求助10
22秒前
柯一一应助热心小松鼠采纳,获得10
23秒前
24秒前
Spydeer发布了新的文献求助10
24秒前
1111chen发布了新的文献求助30
24秒前
26秒前
扣扣登陆完成签到 ,获得积分10
27秒前
28秒前
LL发布了新的文献求助10
31秒前
Alex应助Dahai采纳,获得30
32秒前
完美世界应助琳琳采纳,获得10
32秒前
怡然冰之完成签到 ,获得积分10
32秒前
饱满不悔完成签到 ,获得积分10
32秒前
曼凡发布了新的文献求助10
33秒前
Bryan应助热心小松鼠采纳,获得10
35秒前
zzmAZUSA完成签到,获得积分10
35秒前
冷傲的水儿完成签到,获得积分20
37秒前
学业繁忙完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432