亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network

断层(地质) 计算机科学 发电机(电路理论) 鉴别器 功率(物理) 信号(编程语言) 可靠性(半导体) 模式(计算机接口) 模式识别(心理学) 人工智能 控制理论(社会学) 数据挖掘 控制(管理) 电信 操作系统 物理 地质学 探测器 地震学 程序设计语言 量子力学
作者
Quan Sun,Fei Peng,Xianghai Yu,Hongsheng Li
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:237: 109360-109360 被引量:21
标识
DOI:10.1016/j.ress.2023.109360
摘要

With the rapid development of new energy vehicles, the brushless DC motor (BLDCM) drive system's reliability and safety have attracted extensive attention. The three-phase full-bridge inverter (TFI) of the BLDCM drive system has a high fault occurrence rate under actual working conditions. It is difficult to identify the fault directly, which leads to imbalanced fault datasets. In addition, it is challenging to obtain fault samples directly, which increases the difficulty of fault diagnosis. In response to these problems, a data augmentation method based on Wasserstein distance and auxiliary classification generative adversarial network (WAC-GAN) for TFI fault diagnosis has been proposed. First, based on the Auxiliary Classification Generative Adversarial Network (ACGAN), one-dimensional convolutions are constructed to replace two-dimensional convolutions for the characteristics of a three-phase current signal to improve the extraction efficiency of signal features. Then, the Wasserstein distance is introduced to improve the model's objective function. Based on the principle of the mutual game between the generator and discriminator, the generator can mine the sample distribution characteristics from few fault mode samples and generate numerous fault samples of specific categories to accomplish the purpose of data augmentation. The experimental results show that the fault diagnosis accuracy of the WAC-GAN model under different datasets and different fault modes can achieve satisfactory fault recognition performance. Compared with other data augmentation methods, the effectiveness and superiority of the proposed method has been verified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Sky完成签到,获得积分10
3秒前
bravo发布了新的文献求助200
4秒前
科研通AI6.1应助YANG采纳,获得10
7秒前
学到疯魔完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
GingerF应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
mmyhn应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
11秒前
静翕完成签到 ,获得积分10
11秒前
hh1106完成签到,获得积分10
14秒前
lifeng完成签到 ,获得积分10
16秒前
琳儿真的很瘦了完成签到,获得积分20
16秒前
mnivver发布了新的文献求助10
18秒前
18秒前
19秒前
大模型应助爹爹采纳,获得10
19秒前
白星辰完成签到 ,获得积分10
20秒前
potato0mud发布了新的文献求助10
23秒前
攀登者完成签到,获得积分10
24秒前
old幽露露完成签到 ,获得积分10
24秒前
25秒前
背后凌翠发布了新的文献求助10
27秒前
COIN_77完成签到 ,获得积分10
29秒前
爹爹发布了新的文献求助10
30秒前
32秒前
39秒前
闪闪满天发布了新的文献求助10
43秒前
笨蛋美女完成签到 ,获得积分10
49秒前
50秒前
称心言完成签到 ,获得积分10
53秒前
56秒前
TQ完成签到,获得积分20
57秒前
TQ发布了新的文献求助10
1分钟前
iris601发布了新的文献求助30
1分钟前
无尘完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787991
求助须知:如何正确求助?哪些是违规求助? 5703683
关于积分的说明 15473139
捐赠科研通 4916182
什么是DOI,文献DOI怎么找? 2646245
邀请新用户注册赠送积分活动 1593878
关于科研通互助平台的介绍 1548228