清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer

轮廓 医学 分割 放射治疗 宫颈癌 豪斯多夫距离 放射肿瘤学家 放射科 核医学 癌症 人工智能 计算机科学 计算机图形学(图像) 内科学
作者
Seung Yeun Chung,Jee Suk Chang,Yong Bae Kim
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:7
标识
DOI:10.3389/fonc.2023.1119008
摘要

Background and purpose Deep learning-based models have been actively investigated for various aspects of radiotherapy. However, for cervical cancer, only a few studies dealing with the auto-segmentation of organs-at-risk (OARs) and clinical target volumes (CTVs) exist. This study aimed to train a deep learning-based auto-segmentation model for OAR/CTVs for patients with cervical cancer undergoing radiotherapy and to evaluate the model’s feasibility and efficacy with not only geometric indices but also comprehensive clinical evaluation. Materials and methods A total of 180 abdominopelvic computed tomography images were included (training set, 165; validation set, 15). Geometric indices such as the Dice similarity coefficient (DSC) and the 95% Hausdorff distance (HD) were analyzed. A Turing test was performed and physicians from other institutions were asked to delineate contours with and without using auto-segmented contours to assess inter-physician heterogeneity and contouring time. Results The correlation between the manual and auto-segmented contours was acceptable for the anorectum, bladder, spinal cord, cauda equina, right and left femoral heads, bowel bag, uterocervix, liver, and left and right kidneys (DSC greater than 0.80). The stomach and duodenum showed DSCs of 0.67 and 0.73, respectively. CTVs showed DSCs between 0.75 and 0.80. Turing test results were favorable for most OARs and CTVs. No auto-segmented contours had large, obvious errors. The median overall satisfaction score of the participating physicians was 7 out of 10. Auto-segmentation reduced heterogeneity and shortened contouring time by 30 min among radiation oncologists from different institutions. Most participants favored the auto-contouring system. Conclusion The proposed deep learning-based auto-segmentation model may be an efficient tool for patients with cervical cancer undergoing radiotherapy. Although the current model may not completely replace humans, it can serve as a useful and efficient tool in real-world clinics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
追寻冰淇淋完成签到 ,获得积分10
17秒前
yindi1991完成签到 ,获得积分10
21秒前
仁者无惧完成签到 ,获得积分10
24秒前
25秒前
草木发布了新的文献求助10
35秒前
beplayer1完成签到,获得积分10
51秒前
草木发布了新的文献求助10
54秒前
56秒前
1分钟前
Oliver完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
theo完成签到 ,获得积分10
1分钟前
科研通AI2S应助草木采纳,获得10
1分钟前
喝酸奶不舔盖完成签到 ,获得积分10
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
HIT_WXY完成签到,获得积分10
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
Ji发布了新的文献求助10
1分钟前
浚稚完成签到 ,获得积分10
2分钟前
科研通AI2S应助草木采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
momoni完成签到 ,获得积分10
3分钟前
aiyawy完成签到 ,获得积分10
3分钟前
3分钟前
光合作用完成签到,获得积分10
3分钟前
zjq完成签到 ,获得积分10
3分钟前
脑洞疼应助may采纳,获得10
4分钟前
cy0824完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
黑粉头头完成签到,获得积分10
4分钟前
rtaxa完成签到,获得积分0
5分钟前
5分钟前
Krim完成签到 ,获得积分10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128757
捐赠科研通 3238333
什么是DOI,文献DOI怎么找? 1789703
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069