Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer

轮廓 医学 分割 放射治疗 宫颈癌 豪斯多夫距离 放射肿瘤学家 放射科 核医学 癌症 人工智能 计算机科学 计算机图形学(图像) 内科学
作者
Seung Yeun Chung,Jee Suk Chang,Yong Bae Kim
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:7
标识
DOI:10.3389/fonc.2023.1119008
摘要

Background and purpose Deep learning-based models have been actively investigated for various aspects of radiotherapy. However, for cervical cancer, only a few studies dealing with the auto-segmentation of organs-at-risk (OARs) and clinical target volumes (CTVs) exist. This study aimed to train a deep learning-based auto-segmentation model for OAR/CTVs for patients with cervical cancer undergoing radiotherapy and to evaluate the model’s feasibility and efficacy with not only geometric indices but also comprehensive clinical evaluation. Materials and methods A total of 180 abdominopelvic computed tomography images were included (training set, 165; validation set, 15). Geometric indices such as the Dice similarity coefficient (DSC) and the 95% Hausdorff distance (HD) were analyzed. A Turing test was performed and physicians from other institutions were asked to delineate contours with and without using auto-segmented contours to assess inter-physician heterogeneity and contouring time. Results The correlation between the manual and auto-segmented contours was acceptable for the anorectum, bladder, spinal cord, cauda equina, right and left femoral heads, bowel bag, uterocervix, liver, and left and right kidneys (DSC greater than 0.80). The stomach and duodenum showed DSCs of 0.67 and 0.73, respectively. CTVs showed DSCs between 0.75 and 0.80. Turing test results were favorable for most OARs and CTVs. No auto-segmented contours had large, obvious errors. The median overall satisfaction score of the participating physicians was 7 out of 10. Auto-segmentation reduced heterogeneity and shortened contouring time by 30 min among radiation oncologists from different institutions. Most participants favored the auto-contouring system. Conclusion The proposed deep learning-based auto-segmentation model may be an efficient tool for patients with cervical cancer undergoing radiotherapy. Although the current model may not completely replace humans, it can serve as a useful and efficient tool in real-world clinics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
斯文败类应助300采纳,获得10
1秒前
3秒前
kygingying发布了新的文献求助30
4秒前
乖拉完成签到,获得积分10
4秒前
ikun666发布了新的文献求助10
4秒前
研友_VZG7GZ应助于yu采纳,获得10
6秒前
7秒前
8秒前
裴佳晨发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
可乐鸡翅完成签到,获得积分10
13秒前
迷路的十四应助小鳄鱼采纳,获得10
13秒前
Zx_1993应助hhhg采纳,获得50
13秒前
将将将发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
苑阿宇完成签到 ,获得积分10
15秒前
15秒前
迪歪歪完成签到,获得积分20
15秒前
300发布了新的文献求助10
15秒前
17秒前
风趣手链发布了新的文献求助10
18秒前
隐形曼青应助可乐鸡翅采纳,获得10
18秒前
SciGPT应助迪歪歪采纳,获得10
18秒前
19秒前
wonderting完成签到,获得积分10
19秒前
将将将完成签到,获得积分10
22秒前
22秒前
Dreamable完成签到,获得积分10
22秒前
岸在海的深处完成签到 ,获得积分0
24秒前
Yuki应助binbinbin采纳,获得10
26秒前
石翎完成签到,获得积分10
27秒前
27秒前
jjr发布了新的文献求助10
27秒前
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598801
求助须知:如何正确求助?哪些是违规求助? 4684195
关于积分的说明 14834179
捐赠科研通 4664847
什么是DOI,文献DOI怎么找? 2537406
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470655