亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer

轮廓 医学 分割 放射治疗 宫颈癌 豪斯多夫距离 放射肿瘤学家 放射科 核医学 癌症 人工智能 计算机科学 计算机图形学(图像) 内科学
作者
Seung Yeun Chung,Jee Suk Chang,Yong Bae Kim
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:7
标识
DOI:10.3389/fonc.2023.1119008
摘要

Background and purpose Deep learning-based models have been actively investigated for various aspects of radiotherapy. However, for cervical cancer, only a few studies dealing with the auto-segmentation of organs-at-risk (OARs) and clinical target volumes (CTVs) exist. This study aimed to train a deep learning-based auto-segmentation model for OAR/CTVs for patients with cervical cancer undergoing radiotherapy and to evaluate the model’s feasibility and efficacy with not only geometric indices but also comprehensive clinical evaluation. Materials and methods A total of 180 abdominopelvic computed tomography images were included (training set, 165; validation set, 15). Geometric indices such as the Dice similarity coefficient (DSC) and the 95% Hausdorff distance (HD) were analyzed. A Turing test was performed and physicians from other institutions were asked to delineate contours with and without using auto-segmented contours to assess inter-physician heterogeneity and contouring time. Results The correlation between the manual and auto-segmented contours was acceptable for the anorectum, bladder, spinal cord, cauda equina, right and left femoral heads, bowel bag, uterocervix, liver, and left and right kidneys (DSC greater than 0.80). The stomach and duodenum showed DSCs of 0.67 and 0.73, respectively. CTVs showed DSCs between 0.75 and 0.80. Turing test results were favorable for most OARs and CTVs. No auto-segmented contours had large, obvious errors. The median overall satisfaction score of the participating physicians was 7 out of 10. Auto-segmentation reduced heterogeneity and shortened contouring time by 30 min among radiation oncologists from different institutions. Most participants favored the auto-contouring system. Conclusion The proposed deep learning-based auto-segmentation model may be an efficient tool for patients with cervical cancer undergoing radiotherapy. Although the current model may not completely replace humans, it can serve as a useful and efficient tool in real-world clinics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUNWENREQUEST发布了新的文献求助10
5秒前
赘婿应助科研通管家采纳,获得10
12秒前
19秒前
田様应助LUNWENREQUEST采纳,获得10
19秒前
万能图书馆应助千里草采纳,获得10
29秒前
落落完成签到 ,获得积分0
34秒前
36秒前
傅夜山发布了新的文献求助10
38秒前
LUNWENREQUEST发布了新的文献求助10
40秒前
41秒前
46秒前
zsmj23完成签到 ,获得积分0
50秒前
傅夜山发布了新的文献求助10
51秒前
LUNWENREQUEST完成签到,获得积分10
1分钟前
傅夜山发布了新的文献求助30
1分钟前
傅夜山发布了新的文献求助10
1分钟前
传奇3应助傅夜山采纳,获得10
1分钟前
傅夜山发布了新的文献求助30
2分钟前
jyy发布了新的文献求助10
2分钟前
2分钟前
傅夜山发布了新的文献求助10
2分钟前
2分钟前
Jessica英语好完成签到 ,获得积分10
3分钟前
JL完成签到 ,获得积分10
3分钟前
Georgechan完成签到,获得积分10
3分钟前
4分钟前
jyy发布了新的文献求助20
4分钟前
傅夜山发布了新的文献求助30
4分钟前
乐乐应助傅夜山采纳,获得10
5分钟前
科研通AI2S应助卓头OvQ采纳,获得10
7分钟前
7分钟前
完美世界应助wangsiheng采纳,获得10
8分钟前
未来可期完成签到,获得积分10
8分钟前
8分钟前
傅夜山发布了新的文献求助10
8分钟前
小马甲应助傅夜山采纳,获得10
8分钟前
9分钟前
Magali发布了新的文献求助10
9分钟前
华仔应助科研通管家采纳,获得10
10分钟前
10分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171568
求助须知:如何正确求助?哪些是违规求助? 2822431
关于积分的说明 7939235
捐赠科研通 2483077
什么是DOI,文献DOI怎么找? 1322952
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647