清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel spatio-temporal cellular automata model coupling partitioning with CNN-LSTM to urban land change simulation

细胞自动机 计算机科学 依赖关系(UML) 卷积神经网络 人工智能 马尔可夫链 高斯分布 模式识别(心理学) 算法 数据挖掘 机器学习 量子力学 物理
作者
Ye Zhou,Chen Huang,Tao Wu,Mingyue Zhang
出处
期刊:Ecological Modelling [Elsevier]
卷期号:482: 110394-110394 被引量:32
标识
DOI:10.1016/j.ecolmodel.2023.110394
摘要

Land use change (LUC) has gained attention as a core topic of global ecological environment change research. The cellular automata (CA) model affects the global layout through local changes, and is widely used in LUC. However, most previous studies are based on the assumption of the Markov model which ignores the temporal dependency of LUC. In addition, most researchers have used the identical transition rules when simulating LUC variation across a region, ignoring the spatial heterogeneity in LUC studies. Accordingly, we propose a novel CA model integrating K-means, convolutional neural networks (CNN), and long-short-term memory neural networks (LSTM) to solve temporal dependency and spatial heterogeneity, named K-means-CNN-LSTM-CA (KCL-CA). First, in order to resolve spatial heterogeneity, we divided the study area into homogeneous sub-regions using K-means clustering algorithm. We then extracted multi-year spatial neighbourhood features and assigned weights with Gaussian functions according to the time sequence order to realise the fusion of multi-year features. LSTM was used to extract the spatio-temporal dependency features of historical land use data and to calculate the transition probability maps for sub-regions. Finally, CA generated the dynamic simulation results for the whole region. The KCL-CA model was validated based on data collected in Hangzhou from 1995 to 2020 Traditional logistic regression (LR)-CA and artificial neural network (ANN)-CA were used for comparison. Comparing the traditional model with the results shows that the proposed KCL-CA model improves the FoM index by 9.86%–19.43%. Considering the temporal dependency, the FoM index increased by 0.98%–3.51%; when considering spatial heterogeneity, the FoM index increased by 1.08%–5.15%. KCL-CA can deal with the temporal dependency of spatial heterogeneity in urban land expansion simulations and can effectively predict future urban expansion. The simulation results can effectively monitor the future trend of urban LUC and help to provide policy support for urban planning and management for decision makers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
6秒前
常有李完成签到,获得积分10
7秒前
完美世界应助joysa采纳,获得10
15秒前
27秒前
胖虎发布了新的文献求助10
32秒前
胖虎完成签到,获得积分10
48秒前
gerherg完成签到 ,获得积分10
1分钟前
1分钟前
zly完成签到 ,获得积分10
1分钟前
joysa发布了新的文献求助10
1分钟前
1分钟前
123mmmm发布了新的文献求助10
1分钟前
?.?完成签到 ,获得积分10
2分钟前
David完成签到 ,获得积分10
2分钟前
刘刘完成签到 ,获得积分10
3分钟前
ganggang完成签到,获得积分0
3分钟前
杆杆完成签到 ,获得积分10
4分钟前
4分钟前
可爱沛蓝完成签到 ,获得积分10
5分钟前
局内人完成签到,获得积分10
5分钟前
略微妙蛙完成签到 ,获得积分10
5分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
Monicadd完成签到 ,获得积分10
6分钟前
Ivan完成签到 ,获得积分10
6分钟前
Wang完成签到 ,获得积分20
6分钟前
方白秋完成签到,获得积分0
6分钟前
科研通AI6应助噜噜大王采纳,获得10
7分钟前
迷茫的一代完成签到,获得积分10
7分钟前
7分钟前
ding应助科研通管家采纳,获得10
7分钟前
Akim应助科研通管家采纳,获得10
7分钟前
8分钟前
bju发布了新的文献求助10
8分钟前
bju完成签到,获得积分10
8分钟前
wang1030完成签到 ,获得积分10
8分钟前
噜噜大王发布了新的文献求助10
8分钟前
Heba完成签到,获得积分20
9分钟前
lrid完成签到 ,获得积分10
9分钟前
yxy完成签到 ,获得积分10
9分钟前
希望天下0贩的0应助Claudia采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568283
求助须知:如何正确求助?哪些是违规求助? 4652769
关于积分的说明 14702004
捐赠科研通 4594595
什么是DOI,文献DOI怎么找? 2521083
邀请新用户注册赠送积分活动 1492900
关于科研通互助平台的介绍 1463715