A novel spatio-temporal cellular automata model coupling partitioning with CNN-LSTM to urban land change simulation

细胞自动机 计算机科学 依赖关系(UML) 卷积神经网络 人工智能 马尔可夫链 高斯分布 模式识别(心理学) 算法 数据挖掘 机器学习 物理 量子力学
作者
Ye Zhou,Chen Huang,Tao Wu,Mingyue Zhang
出处
期刊:Ecological Modelling [Elsevier]
卷期号:482: 110394-110394 被引量:32
标识
DOI:10.1016/j.ecolmodel.2023.110394
摘要

Land use change (LUC) has gained attention as a core topic of global ecological environment change research. The cellular automata (CA) model affects the global layout through local changes, and is widely used in LUC. However, most previous studies are based on the assumption of the Markov model which ignores the temporal dependency of LUC. In addition, most researchers have used the identical transition rules when simulating LUC variation across a region, ignoring the spatial heterogeneity in LUC studies. Accordingly, we propose a novel CA model integrating K-means, convolutional neural networks (CNN), and long-short-term memory neural networks (LSTM) to solve temporal dependency and spatial heterogeneity, named K-means-CNN-LSTM-CA (KCL-CA). First, in order to resolve spatial heterogeneity, we divided the study area into homogeneous sub-regions using K-means clustering algorithm. We then extracted multi-year spatial neighbourhood features and assigned weights with Gaussian functions according to the time sequence order to realise the fusion of multi-year features. LSTM was used to extract the spatio-temporal dependency features of historical land use data and to calculate the transition probability maps for sub-regions. Finally, CA generated the dynamic simulation results for the whole region. The KCL-CA model was validated based on data collected in Hangzhou from 1995 to 2020 Traditional logistic regression (LR)-CA and artificial neural network (ANN)-CA were used for comparison. Comparing the traditional model with the results shows that the proposed KCL-CA model improves the FoM index by 9.86%–19.43%. Considering the temporal dependency, the FoM index increased by 0.98%–3.51%; when considering spatial heterogeneity, the FoM index increased by 1.08%–5.15%. KCL-CA can deal with the temporal dependency of spatial heterogeneity in urban land expansion simulations and can effectively predict future urban expansion. The simulation results can effectively monitor the future trend of urban LUC and help to provide policy support for urban planning and management for decision makers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
张佳乐发布了新的文献求助10
2秒前
zhuojiu发布了新的文献求助10
4秒前
lijiauyi1994完成签到,获得积分10
4秒前
5秒前
5秒前
任性蘑菇发布了新的文献求助10
6秒前
single完成签到,获得积分10
6秒前
笨蛋美女完成签到 ,获得积分10
7秒前
Dream完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
Uzma完成签到,获得积分10
11秒前
俊杰完成签到,获得积分10
12秒前
奋斗忆灵发布了新的文献求助10
12秒前
嘿嘿哈完成签到 ,获得积分10
12秒前
123完成签到 ,获得积分10
13秒前
浮浮世世发布了新的文献求助10
13秒前
张佳乐完成签到,获得积分10
14秒前
文艺的冬卉完成签到,获得积分20
15秒前
15秒前
16秒前
16秒前
gaoyang完成签到,获得积分10
17秒前
奋斗忆灵完成签到,获得积分10
18秒前
Tigher发布了新的文献求助30
19秒前
19秒前
深情笑翠发布了新的文献求助10
20秒前
怕孤单的山河完成签到 ,获得积分10
22秒前
万能图书馆应助2302284972采纳,获得10
24秒前
24秒前
浮游应助西西弗斯采纳,获得10
24秒前
香蕉诗蕊应助西西弗斯采纳,获得10
24秒前
浮游应助西西弗斯采纳,获得10
24秒前
打打应助无风风采纳,获得10
24秒前
pancake应助Much采纳,获得200
25秒前
于富强发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716