A novel spatio-temporal cellular automata model coupling partitioning with CNN-LSTM to urban land change simulation

细胞自动机 计算机科学 依赖关系(UML) 卷积神经网络 人工智能 马尔可夫链 高斯分布 模式识别(心理学) 算法 数据挖掘 机器学习 量子力学 物理
作者
Ye Zhou,Chen Huang,Tao Wu,Mingyue Zhang
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:482: 110394-110394 被引量:32
标识
DOI:10.1016/j.ecolmodel.2023.110394
摘要

Land use change (LUC) has gained attention as a core topic of global ecological environment change research. The cellular automata (CA) model affects the global layout through local changes, and is widely used in LUC. However, most previous studies are based on the assumption of the Markov model which ignores the temporal dependency of LUC. In addition, most researchers have used the identical transition rules when simulating LUC variation across a region, ignoring the spatial heterogeneity in LUC studies. Accordingly, we propose a novel CA model integrating K-means, convolutional neural networks (CNN), and long-short-term memory neural networks (LSTM) to solve temporal dependency and spatial heterogeneity, named K-means-CNN-LSTM-CA (KCL-CA). First, in order to resolve spatial heterogeneity, we divided the study area into homogeneous sub-regions using K-means clustering algorithm. We then extracted multi-year spatial neighbourhood features and assigned weights with Gaussian functions according to the time sequence order to realise the fusion of multi-year features. LSTM was used to extract the spatio-temporal dependency features of historical land use data and to calculate the transition probability maps for sub-regions. Finally, CA generated the dynamic simulation results for the whole region. The KCL-CA model was validated based on data collected in Hangzhou from 1995 to 2020 Traditional logistic regression (LR)-CA and artificial neural network (ANN)-CA were used for comparison. Comparing the traditional model with the results shows that the proposed KCL-CA model improves the FoM index by 9.86%–19.43%. Considering the temporal dependency, the FoM index increased by 0.98%–3.51%; when considering spatial heterogeneity, the FoM index increased by 1.08%–5.15%. KCL-CA can deal with the temporal dependency of spatial heterogeneity in urban land expansion simulations and can effectively predict future urban expansion. The simulation results can effectively monitor the future trend of urban LUC and help to provide policy support for urban planning and management for decision makers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白晨发布了新的文献求助10
刚刚
wlscj举报wuyanzu求助涉嫌违规
刚刚
hhhx发布了新的文献求助10
1秒前
1秒前
科目三应助叶赛文采纳,获得10
2秒前
善学以致用应助小李博士采纳,获得10
3秒前
清爽的忆梅完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
飞快的羊青完成签到,获得积分10
6秒前
33完成签到 ,获得积分10
6秒前
redking完成签到,获得积分10
7秒前
我无线用咯完成签到,获得积分10
7秒前
叶十七完成签到,获得积分10
7秒前
7秒前
ding应助xh采纳,获得10
8秒前
Zhuo完成签到 ,获得积分10
10秒前
CY完成签到,获得积分10
10秒前
浮游应助苏苏采纳,获得10
11秒前
11秒前
xxfsx应助ming123ah采纳,获得10
11秒前
13秒前
14秒前
沉静的曼荷完成签到,获得积分20
14秒前
万能图书馆应助Dr.Paper采纳,获得20
15秒前
果蔬锵完成签到,获得积分10
15秒前
17秒前
替代发布了新的文献求助10
17秒前
niuya发布了新的文献求助20
17秒前
yasuofly完成签到,获得积分10
18秒前
笑点低黄豆完成签到,获得积分10
20秒前
爱喝奶茶的柚子完成签到,获得积分10
20秒前
初始蜜蜂完成签到 ,获得积分10
21秒前
21秒前
屈屈发布了新的文献求助10
22秒前
华仔应助嘟嘟喂嘟嘟采纳,获得10
22秒前
18598719786完成签到 ,获得积分10
22秒前
慕青应助小李博士采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272683
求助须知:如何正确求助?哪些是违规求助? 4429853
关于积分的说明 13790177
捐赠科研通 4308344
什么是DOI,文献DOI怎么找? 2364197
邀请新用户注册赠送积分活动 1359798
关于科研通互助平台的介绍 1322761