亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel spatio-temporal cellular automata model coupling partitioning with CNN-LSTM to urban land change simulation

细胞自动机 计算机科学 依赖关系(UML) 卷积神经网络 人工智能 马尔可夫链 高斯分布 模式识别(心理学) 算法 数据挖掘 机器学习 物理 量子力学
作者
Ye Zhou,Chen Huang,Tao Wu,Mingyue Zhang
出处
期刊:Ecological Modelling [Elsevier]
卷期号:482: 110394-110394 被引量:32
标识
DOI:10.1016/j.ecolmodel.2023.110394
摘要

Land use change (LUC) has gained attention as a core topic of global ecological environment change research. The cellular automata (CA) model affects the global layout through local changes, and is widely used in LUC. However, most previous studies are based on the assumption of the Markov model which ignores the temporal dependency of LUC. In addition, most researchers have used the identical transition rules when simulating LUC variation across a region, ignoring the spatial heterogeneity in LUC studies. Accordingly, we propose a novel CA model integrating K-means, convolutional neural networks (CNN), and long-short-term memory neural networks (LSTM) to solve temporal dependency and spatial heterogeneity, named K-means-CNN-LSTM-CA (KCL-CA). First, in order to resolve spatial heterogeneity, we divided the study area into homogeneous sub-regions using K-means clustering algorithm. We then extracted multi-year spatial neighbourhood features and assigned weights with Gaussian functions according to the time sequence order to realise the fusion of multi-year features. LSTM was used to extract the spatio-temporal dependency features of historical land use data and to calculate the transition probability maps for sub-regions. Finally, CA generated the dynamic simulation results for the whole region. The KCL-CA model was validated based on data collected in Hangzhou from 1995 to 2020 Traditional logistic regression (LR)-CA and artificial neural network (ANN)-CA were used for comparison. Comparing the traditional model with the results shows that the proposed KCL-CA model improves the FoM index by 9.86%–19.43%. Considering the temporal dependency, the FoM index increased by 0.98%–3.51%; when considering spatial heterogeneity, the FoM index increased by 1.08%–5.15%. KCL-CA can deal with the temporal dependency of spatial heterogeneity in urban land expansion simulations and can effectively predict future urban expansion. The simulation results can effectively monitor the future trend of urban LUC and help to provide policy support for urban planning and management for decision makers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pia叽完成签到 ,获得积分10
6秒前
balko完成签到,获得积分10
12秒前
18秒前
ersheng发布了新的文献求助10
23秒前
Criminology34应助坦率广山采纳,获得10
29秒前
所所应助啦啦啦采纳,获得10
35秒前
万能图书馆应助啦啦啦采纳,获得10
48秒前
1分钟前
1分钟前
1分钟前
1分钟前
ling发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
iNk应助mlx采纳,获得30
1分钟前
噢斯帕斯基关注了科研通微信公众号
1分钟前
1分钟前
充电宝应助ling采纳,获得10
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
NattyPoe发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
lllll1243完成签到,获得积分10
3分钟前
3分钟前
Lucas应助靓丽的魔镜采纳,获得10
4分钟前
寒冷的妙梦完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
欣怡完成签到 ,获得积分10
4分钟前
4分钟前
靓丽的魔镜完成签到,获得积分20
4分钟前
阿洁发布了新的文献求助30
4分钟前
4分钟前
ccm应助阿洁采纳,获得30
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639713
求助须知:如何正确求助?哪些是违规求助? 4749883
关于积分的说明 15007176
捐赠科研通 4797859
什么是DOI,文献DOI怎么找? 2563980
邀请新用户注册赠送积分活动 1522864
关于科研通互助平台的介绍 1482529