A novel spatio-temporal cellular automata model coupling partitioning with CNN-LSTM to urban land change simulation

细胞自动机 计算机科学 依赖关系(UML) 卷积神经网络 人工智能 马尔可夫链 高斯分布 模式识别(心理学) 算法 数据挖掘 机器学习 物理 量子力学
作者
Ye Zhou,Chen Huang,Tao Wu,Mingyue Zhang
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:482: 110394-110394 被引量:24
标识
DOI:10.1016/j.ecolmodel.2023.110394
摘要

Land use change (LUC) has gained attention as a core topic of global ecological environment change research. The cellular automata (CA) model affects the global layout through local changes, and is widely used in LUC. However, most previous studies are based on the assumption of the Markov model which ignores the temporal dependency of LUC. In addition, most researchers have used the identical transition rules when simulating LUC variation across a region, ignoring the spatial heterogeneity in LUC studies. Accordingly, we propose a novel CA model integrating K-means, convolutional neural networks (CNN), and long-short-term memory neural networks (LSTM) to solve temporal dependency and spatial heterogeneity, named K-means-CNN-LSTM-CA (KCL-CA). First, in order to resolve spatial heterogeneity, we divided the study area into homogeneous sub-regions using K-means clustering algorithm. We then extracted multi-year spatial neighbourhood features and assigned weights with Gaussian functions according to the time sequence order to realise the fusion of multi-year features. LSTM was used to extract the spatio-temporal dependency features of historical land use data and to calculate the transition probability maps for sub-regions. Finally, CA generated the dynamic simulation results for the whole region. The KCL-CA model was validated based on data collected in Hangzhou from 1995 to 2020 Traditional logistic regression (LR)-CA and artificial neural network (ANN)-CA were used for comparison. Comparing the traditional model with the results shows that the proposed KCL-CA model improves the FoM index by 9.86%–19.43%. Considering the temporal dependency, the FoM index increased by 0.98%–3.51%; when considering spatial heterogeneity, the FoM index increased by 1.08%–5.15%. KCL-CA can deal with the temporal dependency of spatial heterogeneity in urban land expansion simulations and can effectively predict future urban expansion. The simulation results can effectively monitor the future trend of urban LUC and help to provide policy support for urban planning and management for decision makers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
hehehe完成签到,获得积分10
5秒前
完美世界应助积极的帽子采纳,获得10
7秒前
小兔子完成签到 ,获得积分10
7秒前
8秒前
9秒前
李白白白发布了新的文献求助10
9秒前
reirei应助shinn采纳,获得10
12秒前
背后海亦发布了新的文献求助10
13秒前
Amy完成签到 ,获得积分10
13秒前
song完成签到 ,获得积分10
14秒前
脑洞疼应助王一一采纳,获得10
15秒前
15秒前
15秒前
南工大小何完成签到,获得积分10
16秒前
17秒前
19秒前
Mesting完成签到,获得积分10
20秒前
七月发布了新的文献求助10
21秒前
Ranrunn完成签到,获得积分10
22秒前
Eureka完成签到,获得积分10
24秒前
24秒前
justsoso完成签到,获得积分10
24秒前
充电宝应助binbin采纳,获得10
26秒前
DQQ发布了新的文献求助10
27秒前
完美世界应助shinn采纳,获得10
28秒前
鲤鱼涔雨发布了新的文献求助10
29秒前
30秒前
E神—十面埋伏完成签到,获得积分10
31秒前
benben应助科研通管家采纳,获得10
34秒前
34秒前
大个应助科研通管家采纳,获得10
34秒前
香蕉觅云应助科研通管家采纳,获得10
34秒前
思源应助科研通管家采纳,获得10
34秒前
heavenhorse应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
DQQ完成签到,获得积分10
35秒前
benben应助科研通管家采纳,获得10
35秒前
Lucas应助科研通管家采纳,获得10
35秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602