A novel spatio-temporal cellular automata model coupling partitioning with CNN-LSTM to urban land change simulation

细胞自动机 计算机科学 依赖关系(UML) 卷积神经网络 人工智能 马尔可夫链 高斯分布 模式识别(心理学) 算法 数据挖掘 机器学习 量子力学 物理
作者
Ye Zhou,Chen Huang,Tao Wu,Mingyue Zhang
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:482: 110394-110394 被引量:32
标识
DOI:10.1016/j.ecolmodel.2023.110394
摘要

Land use change (LUC) has gained attention as a core topic of global ecological environment change research. The cellular automata (CA) model affects the global layout through local changes, and is widely used in LUC. However, most previous studies are based on the assumption of the Markov model which ignores the temporal dependency of LUC. In addition, most researchers have used the identical transition rules when simulating LUC variation across a region, ignoring the spatial heterogeneity in LUC studies. Accordingly, we propose a novel CA model integrating K-means, convolutional neural networks (CNN), and long-short-term memory neural networks (LSTM) to solve temporal dependency and spatial heterogeneity, named K-means-CNN-LSTM-CA (KCL-CA). First, in order to resolve spatial heterogeneity, we divided the study area into homogeneous sub-regions using K-means clustering algorithm. We then extracted multi-year spatial neighbourhood features and assigned weights with Gaussian functions according to the time sequence order to realise the fusion of multi-year features. LSTM was used to extract the spatio-temporal dependency features of historical land use data and to calculate the transition probability maps for sub-regions. Finally, CA generated the dynamic simulation results for the whole region. The KCL-CA model was validated based on data collected in Hangzhou from 1995 to 2020 Traditional logistic regression (LR)-CA and artificial neural network (ANN)-CA were used for comparison. Comparing the traditional model with the results shows that the proposed KCL-CA model improves the FoM index by 9.86%–19.43%. Considering the temporal dependency, the FoM index increased by 0.98%–3.51%; when considering spatial heterogeneity, the FoM index increased by 1.08%–5.15%. KCL-CA can deal with the temporal dependency of spatial heterogeneity in urban land expansion simulations and can effectively predict future urban expansion. The simulation results can effectively monitor the future trend of urban LUC and help to provide policy support for urban planning and management for decision makers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111yyy完成签到,获得积分20
刚刚
刚刚
Nolan完成签到,获得积分10
刚刚
星辰大海应助123采纳,获得10
刚刚
鸣笛应助知性的问筠采纳,获得20
刚刚
刚刚
1秒前
1秒前
杨家鹏发布了新的文献求助10
1秒前
24p0完成签到,获得积分20
1秒前
田様应助粒汇0采纳,获得10
2秒前
王嵩嵩发布了新的文献求助10
2秒前
鹏1989完成签到,获得积分10
3秒前
苏梓卿发布了新的文献求助10
4秒前
NSCWYH完成签到,获得积分10
4秒前
努力发AM发布了新的文献求助10
4秒前
123木头人发布了新的文献求助10
5秒前
体贴的语柔完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
庄周发布了新的文献求助10
6秒前
7秒前
大力听芹发布了新的文献求助10
7秒前
muzi发布了新的文献求助10
8秒前
dr1nk完成签到 ,获得积分10
8秒前
万能图书馆应助yuan采纳,获得10
8秒前
Xixi关注了科研通微信公众号
8秒前
Lyd发布了新的文献求助10
8秒前
鲤鱼丹蝶完成签到,获得积分20
9秒前
9秒前
李昀圃发布了新的文献求助10
9秒前
今后应助11采纳,获得10
10秒前
如意果汁发布了新的文献求助10
10秒前
糊涂的灵枫完成签到,获得积分10
11秒前
Owen应助Salut采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
思源应助缥缈早晨采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
小鼠脑外侧隔核的全脑投射研究 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Signals, Systems, and Signal Processing 400
Sociologies et cosmopolitisme méthodologique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4619685
求助须知:如何正确求助?哪些是违规求助? 4021341
关于积分的说明 12448948
捐赠科研通 3705369
什么是DOI,文献DOI怎么找? 2043425
邀请新用户注册赠送积分活动 1075699
科研通“疑难数据库(出版商)”最低求助积分说明 958935