A novel spatio-temporal cellular automata model coupling partitioning with CNN-LSTM to urban land change simulation

细胞自动机 计算机科学 依赖关系(UML) 卷积神经网络 人工智能 马尔可夫链 高斯分布 模式识别(心理学) 算法 数据挖掘 机器学习 物理 量子力学
作者
Ye Zhou,Chen Huang,Tao Wu,Mingyue Zhang
出处
期刊:Ecological Modelling [Elsevier]
卷期号:482: 110394-110394 被引量:24
标识
DOI:10.1016/j.ecolmodel.2023.110394
摘要

Land use change (LUC) has gained attention as a core topic of global ecological environment change research. The cellular automata (CA) model affects the global layout through local changes, and is widely used in LUC. However, most previous studies are based on the assumption of the Markov model which ignores the temporal dependency of LUC. In addition, most researchers have used the identical transition rules when simulating LUC variation across a region, ignoring the spatial heterogeneity in LUC studies. Accordingly, we propose a novel CA model integrating K-means, convolutional neural networks (CNN), and long-short-term memory neural networks (LSTM) to solve temporal dependency and spatial heterogeneity, named K-means-CNN-LSTM-CA (KCL-CA). First, in order to resolve spatial heterogeneity, we divided the study area into homogeneous sub-regions using K-means clustering algorithm. We then extracted multi-year spatial neighbourhood features and assigned weights with Gaussian functions according to the time sequence order to realise the fusion of multi-year features. LSTM was used to extract the spatio-temporal dependency features of historical land use data and to calculate the transition probability maps for sub-regions. Finally, CA generated the dynamic simulation results for the whole region. The KCL-CA model was validated based on data collected in Hangzhou from 1995 to 2020 Traditional logistic regression (LR)-CA and artificial neural network (ANN)-CA were used for comparison. Comparing the traditional model with the results shows that the proposed KCL-CA model improves the FoM index by 9.86%–19.43%. Considering the temporal dependency, the FoM index increased by 0.98%–3.51%; when considering spatial heterogeneity, the FoM index increased by 1.08%–5.15%. KCL-CA can deal with the temporal dependency of spatial heterogeneity in urban land expansion simulations and can effectively predict future urban expansion. The simulation results can effectively monitor the future trend of urban LUC and help to provide policy support for urban planning and management for decision makers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周周完成签到,获得积分20
1秒前
HNNUYanY应助nns采纳,获得10
1秒前
科研通AI2S应助沉醉采纳,获得30
1秒前
。。发布了新的文献求助10
4秒前
4秒前
隐形曼青应助简奥斯汀采纳,获得10
4秒前
7秒前
nns完成签到,获得积分10
7秒前
万能图书馆应助qiuyu采纳,获得10
8秒前
9秒前
LXR完成签到,获得积分20
9秒前
江南第八完成签到,获得积分10
10秒前
顾矜应助甜美白昼采纳,获得10
10秒前
11秒前
Jasper应助李小麻采纳,获得10
11秒前
陈玉婷发布了新的文献求助10
11秒前
上官若男应助乐观寻雪采纳,获得10
13秒前
酢浆草小熊完成签到 ,获得积分10
13秒前
毛豆应助周周采纳,获得10
13秒前
melon完成签到,获得积分10
15秒前
科研土人应助。。采纳,获得10
16秒前
CodeCraft应助。。采纳,获得10
16秒前
17秒前
melon发布了新的文献求助10
18秒前
真化石渡渡鸟完成签到,获得积分10
20秒前
20秒前
李小麻完成签到,获得积分10
21秒前
月亮很亮完成签到,获得积分10
21秒前
月月月鸟伟完成签到,获得积分10
22秒前
23秒前
24秒前
Yihua发布了新的文献求助10
24秒前
25秒前
25秒前
聪明芝完成签到,获得积分10
26秒前
26秒前
cdercder应助嚯哟采纳,获得20
26秒前
zyd发布了新的文献求助10
26秒前
万能图书馆应助白华苍松采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465294
求助须知:如何正确求助?哪些是违规求助? 3058502
关于积分的说明 9061803
捐赠科研通 2748782
什么是DOI,文献DOI怎么找? 1508120
科研通“疑难数据库(出版商)”最低求助积分说明 696806
邀请新用户注册赠送积分活动 696467