A deep clustering-based mass spectral data visualization strategy for anti-renal fibrotic lead compound identification from natural products

可视化 聚类分析 鉴定(生物学) 铅(地质) 注释 化学 天狼星 计算机科学 数据挖掘 人工智能 计算机视觉 生物 植物 星星 古生物学
作者
Jieying Lai,Lichuang Huang,Yini Bao,Lu Wang,Qiang Lyu,Haodan Kuang,Kuilong Wang,Xianan Sang,Yang Qiao,Hao Cai,Gang Cao
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:147 (21): 4739-4751 被引量:2
标识
DOI:10.1039/d2an01185a
摘要

Natural products have been a key source of drug lead discovery. However, their identification has long been a challenge even with the state-of-the-art analysis technologies like high-resolution mass spectrometry (MS) due to their complexity. Emerging in silico chemical structure prediction tools have provided time-saving and highly efficient approaches for identification of these complex samples. Nevertheless, the interpretation of these MS annotations into key supporting evidence towards specific questions is still a bottleneck in medicinal and biological fields. Here we present a deep clustering-based MS data visualization strategy (MCnebula), integrated with the influential open-source automatic MS annotation platform SIRIUS and in vivo and in vitro methods, to screen and validate potential lead compounds from natural products. MCnebula could provide multi-layer clustering profiles with chemical ontologies and comparative analysis of differential treatments. Plantaginis Semen (PS) is commonly used for treating kidney disease and usually stir-fried with salt water to enhance its anti-renal fibrosis effect, but the reason behind this remains unclear. Taking PS as an example, we comprehensively identified and compared the raw and processed PS extracts with SIRIUS-MCnebula, and screened potential anti-renal fibrotic lead compounds using weighted fold change analysis. Eighty-nine components were identified in PS with isoacteoside, calceolarioside B, 2'-acetylacteoside, and plantainoside D being screened and validated to treat renal fibrosis. The novel developed mass spectral data visualization strategy combined with biological function investigation and validation workflow could not only accelerate the discovery of lead compounds from medicinal natural products, but also shed new light on the traditional processing theory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangc完成签到,获得积分10
2秒前
lv发布了新的文献求助10
3秒前
善学以致用应助jinxuan采纳,获得10
7秒前
lyzzz完成签到 ,获得积分20
8秒前
9秒前
jiao完成签到,获得积分10
9秒前
lyzzz关注了科研通微信公众号
13秒前
13秒前
七月完成签到 ,获得积分10
13秒前
潮汐发布了新的文献求助10
14秒前
zt发布了新的文献求助10
14秒前
19秒前
Wufufu完成签到 ,获得积分10
19秒前
赘婿应助颜云尔采纳,获得10
19秒前
aa完成签到,获得积分10
19秒前
JamesPei应助哇哈哈采纳,获得10
19秒前
小马甲应助郑开司09采纳,获得10
19秒前
烟花应助新用户采纳,获得30
20秒前
20秒前
吴彦祖发布了新的文献求助10
20秒前
上官若男应助科研通管家采纳,获得10
22秒前
22秒前
慕青应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
情怀应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
852应助fcc采纳,获得10
26秒前
爱听歌凤灵完成签到,获得积分10
27秒前
27秒前
28秒前
31秒前
31秒前
WeiXu完成签到,获得积分10
32秒前
嗯哼应助舒适谷兰采纳,获得30
32秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329501
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594396
捐赠科研通 2637597
什么是DOI,文献DOI怎么找? 1443667
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656220