Permeation-Enhanced Degassing Method Based on Xylem Embolism Repair and Gas Permeable Materials

渗透 微流控 气泡 材料科学 纳米技术 磁导率 化学 化学工程 机械 生物化学 工程类 物理
作者
Lihua Guo,Jie Shan,Penghui Ran,Shuqing Yin,Chong Liu,Jingmin Li
出处
期刊:Langmuir [American Chemical Society]
卷期号:38 (40): 12373-12381
标识
DOI:10.1021/acs.langmuir.2c02145
摘要

Microfluidic devices have developed a wide range of applications in the fields of biomedicine, chemistry, and analytical science. But it is easy to form and accumulate bubbles in microfluidic devices. These bubbles could decrease the detection sensitivity, cause inaccurate analysis results, and even damage the functional region of the device. Inspired by the embolism repair mechanism of angiosperms and the permeability of gas permeable materials, this work proposes a bioinspired permeation-enhanced degassing method. Bionic redundant pits are used in this method to keep bubbles from spreading between microchannels and maintain the continuity of the flow. A hydrophobic gas permeable material is used to enhance the bubble capture capability and accelerate the degassing process. This method can eliminate bubbles automatically and continuously in real time without auxiliary equipment. Compared to the bubble removal only depending on solution in water, the degassing effect of the permeation-enhanced degassing method shows about 1.6 times improvement in the same conditions, and the capability of trapping bubbles is improved by 1.33 times. In this paper, this method was integrated into a concentration gradient generator and a cell culture device. The results show that the concentration gradient generator with degassing structures can dissolve bubbles in a rapid way and reach the stability of the concentration gradient within 5-15 min. The degassing method can run for a long time and improve the cell density and cell viability of HeLa cells up to 2.64 and 1.12 times, respectively. The method has a broad application prospect in microfluidic fields including biomedical fluid processing, virus detection, and microscale reactor operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微尘完成签到,获得积分10
刚刚
1秒前
二硫碘化钾完成签到,获得积分10
1秒前
研友_LpQGjn完成签到 ,获得积分10
1秒前
AaoTii完成签到,获得积分10
1秒前
花火易逝完成签到,获得积分10
2秒前
2秒前
Kong完成签到,获得积分10
3秒前
励志梦完成签到,获得积分10
3秒前
诚心淇完成签到,获得积分10
4秒前
琅琊为刃发布了新的文献求助10
4秒前
ttkd11完成签到,获得积分10
4秒前
dx完成签到,获得积分10
5秒前
scq完成签到 ,获得积分10
5秒前
苹果平安完成签到,获得积分10
6秒前
jessicazhong完成签到,获得积分10
6秒前
Onism完成签到,获得积分10
6秒前
7秒前
ccc应助haihe采纳,获得10
8秒前
z小婉完成签到,获得积分10
8秒前
景平完成签到,获得积分10
8秒前
神启完成签到 ,获得积分10
8秒前
无限的寄真完成签到 ,获得积分10
9秒前
9秒前
BSFXZ完成签到,获得积分10
9秒前
PearRay完成签到 ,获得积分10
9秒前
三寿完成签到,获得积分10
10秒前
汤锐完成签到,获得积分0
11秒前
cici完成签到 ,获得积分10
11秒前
威武鞅完成签到,获得积分10
11秒前
Lq完成签到,获得积分10
11秒前
pluto应助善良的火采纳,获得30
12秒前
yuan完成签到,获得积分10
12秒前
科研女郎完成签到 ,获得积分10
13秒前
天才完成签到,获得积分10
14秒前
独特的臻完成签到,获得积分10
14秒前
JTHe完成签到,获得积分0
14秒前
刻苦从阳完成签到,获得积分10
14秒前
等待秀发布了新的文献求助10
15秒前
儒雅海之完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466885
求助须知:如何正确求助?哪些是违规求助? 3059739
关于积分的说明 9067681
捐赠科研通 2750226
什么是DOI,文献DOI怎么找? 1509108
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696945