光电流
材料科学
光电子学
电子转移
刺激
光电导性
纳米技术
生物物理学
化学
光化学
生物
神经科学
作者
Fangwei Qi,Ruobing Liao,Liuyimei Yang,Mingli Yang,Huixing Li,Gang Chen,Shuping Peng,Sheng Yang,Cijun Shuai
标识
DOI:10.1016/j.colsurfb.2022.112890
摘要
Electrical stimulation was restrained by an external power supply and wires, despite its ability to promote nerve cell growth. Bismuth sulfide (Bi2S3) offered a novel prospect for achieving wireless electrical stimulation due to its photoelectric effect. Herein, silver nanoparticles (Ag NPs) were in-situ grown on Bi2S3 surface (Ag/Bi2S3) and then mixed with poly-L-lactic acid (PLLA) powders to fabricate PLLA-Ag/Bi2S3 conduits. On the one hand, Bi2S3 would generate photocurrent under light excitation, forming a wireless electrical stimulation. On the other hand, Ag NPs would form localized electrical fields under light excitation to inhibit rapid electron-hole recombination of Bi2S3. Moreover, Ag NPs would act as electron mediators to accelerate electron transfer, further elevating photocurrent. Electrochemical tests and FDTD simulations revealed the localized electrical fields generated by Ag NPs acted on Bi2S3, resulting in a boosted electron-hole separation evidenced by a reduction in photoluminescence intensity. EIS measurements demonstrated a faster electron transfer occurred on Ag/Bi2S3. As a result, the photocurrent of PLLA-Ag/Bi2S3 increased from 0.26 to 1.03 μA as compared with PLLA-Bi2S3. The enhanced photocurrent effectively promoted cell differentiation by up-regulating Ca2+ influx and nerve growth-related protein SYN1 expression. This work suggested a promising countermeasure in the design of photocurrent stimulation conduits for nerve repair.
科研通智能强力驱动
Strongly Powered by AbleSci AI