海水
固碳
地球大气中的二氧化碳
自养
二氧化碳
碳酸盐
环境科学
无机碳总量
环境化学
光合作用
蓝藻
固碳
碳循环
矿化(土壤科学)
微生物
大气碳循环
海洋酸化
碳纤维
化学
海洋学
生态学
生态系统
材料科学
土壤科学
地质学
生物
细菌
复合材料
生物化学
有机化学
土壤水分
古生物学
复合数
作者
Atsu Kludze,Devan Solanki,Marcelo Lejeune,Rito Yanagi,Momoko Ishii,Neera Raychaudhuri,Paul T. Anastas,Nanette R. Boyle,Shu Hu
出处
期刊:iScience
[Elsevier]
日期:2022-09-17
卷期号:25 (10): 105156-105156
被引量:5
标识
DOI:10.1016/j.isci.2022.105156
摘要
Increasing concentrations of atmospheric CO2 are leading to rising global temperatures and extreme weather events. However, the most prominent method of removing CO2 via direct air capture remains cost-prohibitive. Oceans sequester carbon through several naturally occurring carbon dioxide removal (CDR) processes, one of which includes microorganisms that utilize dissolved inorganic carbon (DIC) in their metabolic processes. Atmospheric CO2 is in dynamic equilibrium with DIC at the ocean's surface. Thus, ocean-based CDR can function to capture carbon from the air indirectly. This work discusses a hybrid method that combines primary CO2 capture via the growth of autotrophic microorganisms (i.e., photosynthetic cyanobacteria) and microbially induced carbonate precipitation. Carbon fixation and carbonate precipitation can be co-optimized using bipolar membrane electrodialysis (BPMED) devices , which generate seawater with an adjustable pH. We examine the scale-up potential for naturally produced bio-carbonate composite material and compare its production with published ocean CDR strategies for reducing anthropogenic CO2 emissions.
科研通智能强力驱动
Strongly Powered by AbleSci AI