Risks and Benefits of AI-generated Text Summarization for Expert Level Content in Graduate Health Informatics

自动汇总 计算机科学 信息学 健康信息学 人工智能 数据科学 情报检索 医学 公共卫生 护理部 电气工程 工程类
作者
Regina Merine,Saptarshi Purkayastha
标识
DOI:10.1109/ichi54592.2022.00113
摘要

AI-generated text summarization (AI-GTS) is now a popular topic in applied computer science education. It has proven helpful in various sectors, but its benefits and risks in education have not been thoroughly investigated. Few researchers have demonstrated the benefits of employing AI-generated text summaries in learning to generate ideas swiftly and to explore insights and hidden knowledge. AI-GTS has made it easier for students to understand electronically-available critical information. On the other hand, the risks linked with its implementation in education are understudied. Some anticipated risks include harming pupils' writing skills, overdependence, reduced critical thinking capacity, and increased plagiarism. This paper presents the application of AI-generated text summarization in a graduate health informatics course and discusses the risks and benefits to students. Furthermore, utilizing the Bidirectional Encoder Representations from Transformers (BERT) model, we demonstrate that the current state-of-the-art AI-generated text summarization has the potential to create expert knowledge content. We conducted a study with 58 health informatics graduate students in the Fall of 2019 to write annotated bibliography for 25 articles each, to which we also added the AI-generated article summaries. We then asked the students to peer grade and distinguish the AI-generated annotations from the student-written summary. Using the Kruskal-Wallis test, we found no significant difference in the peer grades between the two. The robustness of such AI-generated text summarization raises important questions for educators teaching in health informatics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zj杰发布了新的文献求助10
刚刚
1秒前
1秒前
xiaoluuu发布了新的文献求助10
2秒前
2秒前
Cloud应助nn采纳,获得20
2秒前
Cloud应助nn采纳,获得20
2秒前
2秒前
3秒前
丁昆完成签到,获得积分10
3秒前
2123121321321发布了新的文献求助10
7秒前
8秒前
8秒前
10秒前
科研通AI2S应助亚当采纳,获得10
11秒前
搜集达人应助xiaoluuu采纳,获得10
11秒前
14秒前
江子川发布了新的文献求助10
16秒前
18秒前
passion完成签到,获得积分10
19秒前
顺利萧完成签到,获得积分10
21秒前
Brian_Fang完成签到,获得积分10
22秒前
王耳朵完成签到,获得积分10
22秒前
23秒前
poiuy发布了新的文献求助10
24秒前
科研通AI2S应助木子采纳,获得10
25秒前
Coatings完成签到,获得积分10
27秒前
花痴的小松鼠完成签到 ,获得积分10
28秒前
温婉的三娘完成签到,获得积分20
28秒前
江子川完成签到,获得积分10
29秒前
贪学傲菡发布了新的文献求助10
29秒前
不安河水完成签到 ,获得积分10
34秒前
35秒前
xq完成签到,获得积分10
36秒前
37秒前
yyyyyy发布了新的文献求助10
38秒前
漂泊发布了新的文献求助10
39秒前
科研通AI2S应助木子采纳,获得10
39秒前
充电宝应助ICEBLUE采纳,获得10
43秒前
44秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148036
求助须知:如何正确求助?哪些是违规求助? 2799034
关于积分的说明 7833337
捐赠科研通 2456217
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628077
版权声明 601620