Using Latent Profile Analysis to Identify Associations Between Gestational Chemical Mixtures and Child Neurodevelopment

韦克斯勒学龄前和初级智力量表 潜在类模型 韦氏成人智力量表 心理学 置信区间 发展心理学 医学 认知 精神科 韦氏儿童智力量表 内科学 统计 数学
作者
Amanda M. Yonkman,Joshua D. Alampi,Angela Kaida,Ryan Allen,Aimin Chen,Bruce P. Lanphear,Joseph M. Braun,Gina Muckle,Tye E. Arbuckle,Lawrence C. McCandless
出处
期刊:Epidemiology [Ovid Technologies (Wolters Kluwer)]
卷期号:34 (1): 45-55 被引量:7
标识
DOI:10.1097/ede.0000000000001554
摘要

Unsupervised machine learning techniques have become increasingly popular for studying associations between gestational exposure mixtures and human health. Latent profile analysis is one method that has not been fully explored.We estimated associations between gestational chemical mixtures and child neurodevelopment using latent profile analysis. Using data from the Maternal-Infant Research on Environmental Chemicals (MIREC) research platform, a longitudinal cohort of pregnant Canadian women and their children, we generated latent profiles from 27 gestational exposure biomarkers. We then examined the associations between these profiles and child Verbal IQ, Performance IQ, and Full-Scale IQ, measured with the Wechsler Preschool and Primary Scale of Intelligence, Third Edition (WPPSI-III). We validated our findings using k-means clustering.Latent profile analysis detected five latent profiles of exposure: a reference profile containing 61% of the study participants, a high monoethyl phthalate (MEP) profile with moderately low persistent organic pollutants (POPs) containing 26%, a high POP profile containing 6%, a low POP profile containing 4%, and a smoking chemicals profile containing 3%. We observed negative associations between both the smoking chemicals and high MEP profiles and all IQ scores and between the high POP profile and Full-Scale and Verbal IQ scores. We also found a positive association between the low POP profile and Full-Scale and Performance IQ scores. All associations had wide 95% confidence intervals.Latent profile analysis is a promising technique for identifying patterns of chemical exposure and is worthy of further study for its use in examining complicated exposure mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助丁丁要发SCI采纳,获得10
2秒前
acc发布了新的文献求助10
4秒前
王旭智完成签到,获得积分10
8秒前
我是老大应助莫西莫西采纳,获得10
8秒前
只谈风月发布了新的文献求助10
9秒前
9秒前
10秒前
wujingshuai完成签到,获得积分10
10秒前
souqy完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
娇气的天亦完成签到,获得积分10
13秒前
siliang发布了新的文献求助10
13秒前
1a关注了科研通微信公众号
14秒前
14秒前
大模型应助清欢采纳,获得10
16秒前
haliw发布了新的文献求助10
16秒前
16秒前
乐乐应助acc采纳,获得10
17秒前
hjc完成签到,获得积分10
17秒前
丁爽完成签到,获得积分20
18秒前
18秒前
20秒前
Matthewwt完成签到,获得积分10
21秒前
惊天大幂幂完成签到,获得积分10
22秒前
莫西莫西发布了新的文献求助10
23秒前
25秒前
清欢发布了新的文献求助10
28秒前
souqy发布了新的文献求助10
29秒前
肖阳完成签到,获得积分10
29秒前
马美丽完成签到 ,获得积分10
31秒前
32秒前
32秒前
34秒前
yolo完成签到,获得积分10
35秒前
羔羊完成签到 ,获得积分10
37秒前
zby完成签到,获得积分10
38秒前
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164206
求助须知:如何正确求助?哪些是违规求助? 2814933
关于积分的说明 7907108
捐赠科研通 2474500
什么是DOI,文献DOI怎么找? 1317542
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228