A Classification Model of EEG Signals Based on RNN-LSTM for Diagnosing Focal and Generalized Epilepsy

癫痫 脑电图 人工智能 计算机科学 模式识别(心理学) 全身性癫痫 特征提取 特征(语言学) 小波 特征选择 神经科学 心理学 语言学 哲学
作者
Tahereh Najafi,Rosmina Jaafar,Rabani Remli,Wan Asyraf Wan Zaidi
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (19): 7269-7269 被引量:17
标识
DOI:10.3390/s22197269
摘要

Epilepsy is a chronic neurological disorder caused by abnormal neuronal activity that is diagnosed visually by analyzing electroencephalography (EEG) signals.Surgical operations are the only option for epilepsy treatment when patients are refractory to treatment, which highlights the role of classifying focal and generalized epilepsy syndrome. Therefore, developing a model to be used for diagnosing focal and generalized epilepsy automatically is important.A classification model based on longitudinal bipolar montage (LB), discrete wavelet transform (DWT), feature extraction techniques, and statistical analysis in feature selection for RNN combined with long short-term memory (LSTM) is proposed in this work for identifying epilepsy. Initially, normal and epileptic LB channels were decomposed into three levels, and 15 various features were extracted. The selected features were extracted from each segment of the signals and fed into LSTM for the classification approach.The proposed algorithm achieved a 96.1% accuracy, a 96.8% sensitivity, and a 97.4% specificity in distinguishing normal subjects from subjects with epilepsy. This optimal model was used to analyze the channels of subjects with focal and generalized epilepsy for diagnosing purposes, relying on statistical parameters.The proposed approach is promising, as it can be used to detect epilepsy with satisfactory classification performance and diagnose focal and generalized epilepsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
老实毛衣完成签到,获得积分10
2秒前
yql发布了新的文献求助10
2秒前
3秒前
星辰大海应助waerteyang采纳,获得10
3秒前
刻苦复天完成签到,获得积分10
3秒前
科研通AI5应助憨憨的小于采纳,获得10
3秒前
cc发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
齐静春完成签到,获得积分10
5秒前
鱼贝贝发布了新的文献求助10
5秒前
澳澳完成签到 ,获得积分10
6秒前
小破名完成签到,获得积分10
6秒前
尔蓝红颜发布了新的文献求助10
7秒前
文献搬运工完成签到,获得积分10
7秒前
希言自然发布了新的文献求助10
7秒前
所所应助Windlove采纳,获得10
8秒前
8秒前
洁净奄完成签到,获得积分10
10秒前
11秒前
cc完成签到,获得积分20
11秒前
13秒前
13秒前
13秒前
烟花应助悦耳的沛文采纳,获得20
13秒前
bkagyin应助大雪封山采纳,获得10
13秒前
哇哈哈哈发布了新的文献求助10
14秒前
meng完成签到,获得积分10
15秒前
上官若男应助Pagius采纳,获得10
15秒前
星空完成签到,获得积分10
15秒前
啦啦啦发布了新的文献求助10
16秒前
领导范儿应助鱼贝贝采纳,获得10
17秒前
粗心的胜发布了新的文献求助10
17秒前
午餐肉完成签到,获得积分10
17秒前
18秒前
小白龙应助欢喜的雁枫采纳,获得10
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668364
求助须知:如何正确求助?哪些是违规求助? 3226616
关于积分的说明 9770744
捐赠科研通 2936575
什么是DOI,文献DOI怎么找? 1608673
邀请新用户注册赠送积分活动 759769
科研通“疑难数据库(出版商)”最低求助积分说明 735571