数学
超收敛
伯格斯方程
索波列夫空间
有限元法
非线性系统
规范(哲学)
数学分析
消散
反向欧拉法
类型(生物学)
应用数学
数值分析
能量(信号处理)
欧拉公式
欧拉方程
偏微分方程
生态学
统计
物理
量子力学
生物
政治学
法学
热力学
作者
Junjun Wang,Meng Li,Xibao Li
标识
DOI:10.1016/j.aml.2022.108440
摘要
We propose an energy-stable finite element method (FEM) of the Sobolev equation with Burgers’ type nonlinearity by implicit Euler method in time and nonconforming EQ1rot element in space. A stabilized term is innovatively added in this work to preserve the energy dissipation of the numerical scheme. Then we directly obtain the prior estimates of the numerical solution, with which the unique solvability of the fully-discrete scheme is derived. Subsequently, a novel strategy is utilized to achieve the superclose estimate of order O(h2+τ) in broken H1-norm. Using the interpolated postprocessing technique, the global superconvergence result is obtained. At last, numerical example is given to confirm the theoretical analysis. Here, h is the spatial parameter, and τ is the time step.
科研通智能强力驱动
Strongly Powered by AbleSci AI