计算机科学
数据集成
生成模型
人工智能
稳健性(进化)
生成语法
表达式(计算机科学)
机器学习
判别式
关系(数据库)
数据挖掘
生物
生物化学
基因
程序设计语言
作者
Chengming Zhang,Yiwen Yang,Shijie Tang,Kazuyuki Aihara,Chuanchao Zhang,Luonan Chen
摘要
Advances in single-cell multi-omics technology provide an unprecedented opportunity to fully understand cellular heterogeneity. However, integrating omics data from multiple modalities is challenging due to the individual characteristics of each measurement. Here, to solve such a problem, we propose a contrastive and generative deep self-expression model, called single-cell multimodal self-expressive integration (scMSI), which integrates the heterogeneous multimodal data into a unified manifold space. Specifically, scMSI first learns each omics-specific latent representation and self-expression relationship to consider the characteristics of different omics data by deep self-expressive generative model. Then, scMSI combines these omics-specific self-expression relations through contrastive learning. In such a way, scMSI provides a paradigm to integrate multiple omics data even with weak relation, which effectively achieves the representation learning and data integration into a unified framework. We demonstrate that scMSI provides a cohesive solution for a variety of analysis tasks, such as integration analysis, data denoising, batch correction and spatial domain detection. We have applied scMSI on various single-cell and spatial multimodal datasets to validate its high effectiveness and robustness in diverse data types and application scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI